Вытеснение нефти газом

Автор: Пользователь скрыл имя, 23 Октября 2011 в 08:59, курсовая работа

Описание работы

Методы поддержания пластового давления путем нагнетания в пласт воды или свободного газа, а также методы восполнения энергии в месторождениях с истощенными ее ресурсами (так называемые вторичные методы добычи нефти) не позволяют извлекать все запасы нефти. Поэтому продолжаются усиленные поиски новых методов увеличения нефтеотдачи. В основе их всегда лежат соответствующие физические закономерности.
Например, лучше вытесняются из пласта маловязкие нефти. Поэтому некоторые методы увеличения нефтеотдачи пластов основаны на искусственном введении в пласт тепла и теплоносителей для снижения вязкости пластовой нефти.

Работа содержит 1 файл

Вытеснение нефти газом.doc

— 786.00 Кб (Скачать)

    ВВЕДЕНИЕ

    Увеличение  нефтеотдачи пластов - сложная проблема, для решения которой используется опыт, накопленный во всех областях нефтепромыслового дела. Извлекаемые запасы нефти и газа можно увеличить путем правильной расстановки скважин на залежи с учетом геологического строения пластов. Хорошие результаты получают при регулировании процесса стягивания контуров водоносности с целью повышения равномерности выработки различных частей залежей. Эффективность эксплуатации залежи улучшается путем воздействия на забой скважин с целью увеличения их дебитов и выравнивания профиля притока нефти и газа и т.д.

    За  многолетнюю практику разработки нефтяных месторождений предложено множество методов и технологических приемов, позволяющих увеличить отбор нефти из пород. Далее рассмотрим некоторые методы увеличения нефтеотдачи, основанные на тех или иных физических явлениях.

    Увеличения  нефтеотдачи пластов можно добиться искусственно, развивая и поддерживая в залежи благоприятные физические условия, обеспечивающие наиболее эффективное вытеснение нефти из коллектора.

    Как известно, вода значительно лучше вытесняет нефть из пористых сред, чем газ. Поэтому везде, где это целесообразно по геологическим условиям и экономическим соображениям, необходимо создавать естественный или искусственный водонапорный режим вытеснения. Искусственно поддерживаемый водонапорный режим в залежи создают путем нагнетания воды с поверхности в пласт за контур нефтеносности или же в нефтяную часть пласта. Эффективность заводнения еще более повышаемся при добавлении в нагнетаемую в пласт воду специальных веществ, в результате чего улучшаются ее нефтевытесняющие свойства.

    Методы  поддержания пластового давления путем  нагнетания в пласт воды или свободного газа, а также методы восполнения энергии в месторождениях с истощенными ее ресурсами (так называемые вторичные методы добычи нефти) не позволяют извлекать все запасы нефти. Поэтому продолжаются усиленные поиски новых методов увеличения нефтеотдачи. В основе их всегда лежат соответствующие физические закономерности.

    Например, лучше вытесняются из пласта маловязкие нефти. Поэтому некоторые методы увеличения нефтеотдачи пластов  основаны на искусственном введении в пласт тепла и теплоносителей для снижения вязкости пластовой нефти.

    Как известно, даже тяжелые битумы хорошо растворяются в некоторых легких углеводородных растворителях. Например, бензин или жидкий пропан способны удалять из пористой среды практически всю нефть. Это свойство растворителей используется для разработки методов увеличения нефтеотдачи путем нагнетания в пласт сжиженных газов.

    В одной из глав этой работы будет  рассмотрено явления обратного испарения и конденсации тяжелых углеводородов в газовой среде высокого давления. Это свойство газов используется для разработки методов уменьшения остаточной нефтенасыщениости путем искусственного перевода части нефтяных фракций в пласте в паровую фазу при нагнетании в залежь газов высокого давления. Газ из эксплуатационных скважин затем вместе с продуктами нефти, перешедшими в паровую фазу, извлекается на поверхность.

    Несомненно, что дальнейшее изучение физических свойств пластовых жидкостей, физикохимии пласта и законов движения жидкостей в пористой среде приведет в будущем к получению новых методов повышения отдачи нефти пластами, основанных па новых физических принципах.

    В качестве примера приложения теоретических  основ физики нефтяного пласта к  нефтепромысловой практике рассмотрим физические основы некоторых методов  увеличения нефтеотдачи пластов.

 

     1. ИЗВЛЕЧЕНИЕ НЕФТИ ГАЗОМ ВЫСОКОГО ДАВЛЕНИЯ

    В этой главе будут рассмотрены свойства нефтегазовых смесей и, в частности, явления обратного или ретроградного их испарения. Эти свойства сжатых газов можно использовать для увеличения нефтеотдачи пластов. При этом в залежь для повышения давления необходимо нагнетать газ, который становится растворителем жидких компонентов нефти. По данным опытов, при некоторых весьма высоких давлениях в газе растворяются почти все компоненты нефти, за исключением смолистых и других тяжелых ее составляющих. Добывая затем этот газ, в котором содержатся пары нефти или ее компоненты, на поверхности можно получать конденсат, выпадающий при снижении давления. Таким образом, сущность этого метода заключается в искусственном превращении месторождения в газоконденсатное. Практически это трудно осуществить, так как для растворения всей нефти требуются очень высокие давления (70 - 100 МПа) и огромные объемы газа (до 3000 м3 в нормальных условиях для растворения 1 м3 нефти). Давления обратного испарения значительно уменьшаются, если в составе нагнетаемого газа содержатся тяжелые углеводородные газы - этан, пропан или углекислота. Но объем требующегося газа остается высоким.

    Процесс можно значительно упростить  и удешевить, если извлекать за счет процесса испарения лишь наиболее ценные летучие фракции нефти. Для этого следует нагнетать меньшие объемы сухого газа при более низких давлениях по сравнению с давлениями, необходимыми для полного растворения нефти в газе. В остальном сущность процесса остается той же. 

      
 
 

    Опытами установлено, что в процессе нагнетания в модель пласта, содержащего легкие нефти, газов высокого давления нефтеотдача бывает большей, чем должна быть только при обратном испарении фракций нефти. Движущийся по пласту газ постепенно обогащается этаном и более тяжелыми углеводородами, а метан, встречаясь со свежими порциями нефти, имеющими давление насыщения ниже давления нагнетаемого газа, растворяется в нефти. Газ, содержащий значительное количество тяжелых углеводородов, уже при сравнительно небольших давлениях и температурах полностью смешивается с нефтью. Нефтеотдача при этом высокая, так как процесс становится близким к тому, который наблюдается во время вытеснения нефти жидким растворителем.

    При рассмотрении и интерпретации различных  процессов фазовых превращений, которые встречаются в процессе вытеснения нефти газом, пользуются диаграммами (рис. 1.1) физического состояния углеводородной системы при заданных температуре и давлении. На этой диаграмме углеводородная система произвольно представлена в виде трех групп компонентов - любая точка в пределах диаграммы характеризует состав углеводородной системы в виде соотношения каждой из трех групп компонентов: метана С1 углеводородов от этана С2 до гексана С6 и гептана С7. Вершины треугольников соответствуют 100%-ному содержанию соответствующих групп компонентов в системе. Сплошная линия 1 (в виде петли) на диаграмме является кривой раздела фаз. Она ограничивает двухфазную область. Кривая раздела фаз представляет собой геометрическое место точек состава систем, которые имеют при заданной температуре данное давление насыщения. Нижний участок кривой относится к жидкой фазе, а верхний - к газовой. Они соединяются в точке 8, которая характеризует состав смеси с критическими давлением и температурой. Линия 2 (связывающая линия) оканчивается в точках на кривой состава насыщенного пара и насыщенной газом нефти, которые находятся в равновесном состоянии при данных температуре и давлении, для которых составлена диаграмма.

    Смеси, соответствующие точкам выше и справа от кривой насыщенного пара, представляют газ (область 5), и смеси, соответствующие точкам ниже и слева кривой насыщенной газом жидкости, представляют собой нефть (область 6). Смеси в области правее и ниже кривой раздела фаз относятся к области критических смесей и находятся либо в газовой, либо в жидкой фазе. На участке этой области выше и справа от кривой раздела фаз (область 10) в смеси содержится меньшее количество тяжелых компонентов C1+. Эти углеводороды смешиваются со смесями, представленными точками в газовой области. Другой участок критической области смесей расположен ниже и справа от двухфазной области (область 9). В смесях здесь содержится меньше метана С1 и смешиваются они с углеводородами, представленными точками в нефтяной области.

    Уже упоминалось, что в зависимости  от пластовых условий (давления и температуры), состава нефти и нагнетаемого газа возможны различные варианты процесса вытеснения нефти газом. Если в пласт нагнетают сухие газы (например, метан) при низком пластовом давлении, тогда будут выноситься сравнительно небольшие количества промежуточных компонентов (С2 - С6).

      
 

    Более сложное взаимодействие нефти и  газа происходит при нагнетании в  пласт жирных газов, содержащих значительное количество компонентов (С2 - С6). Во время перемещения в пласте нефть и жирный газ могут подвергаться существенным изменениям вследствие конденсации компонентов газа в нефти и явлений обратного испарения. В зависимости от пластовых условий и исходного состава системы нефть может вытесняться как в критических, так и некритических условиях. Диаграммы физического состояния углеводородной системы при заданных температуре и давлении позволяют проследить за детальными различиями между упомянутыми видами газового воздействия на пласт, например, за различиями между процессами перехода нефти в газоконденсатное состояние и закачкой газа под высоким давлением с частичным переводом компонентов нефти в газовую фазу. В качестве примера рассмотрим изменение свойств нефтяных смесей в процессе вытеснения нефти жирным газом, тяжелые компоненты которого могут конденсироваться в пластовых условиях и переходить в нефтяную фазу с возникновением условий критического вытеснения. При критическом вытеснении между нефтяной и газовой зонами образуется смесь углеводородов, находящихся в данных условиях в пласте в области выше критической (рис. 1.2). В таком случае нефть вытесняется газом в условиях, когда отсутствуют мениски на разделе фаз и нефтеотдача может быть повышена до значений, близких к 100 %.

    Пусть жирный газ (точка 5) вытесняет в пласте нефть (точка 4). При их контакте газ теряет часть своих тяжелых компонентов и приходит в равновесие с нефтью, обогатившейся новыми компонентами (точки 1-1 на кривых составов насыщенного пара и насыщенной жидкости). В последующем при контакте с новыми порциями газа, имеющего исходный состав, эта нефть все больше обогащается углеводородами С2 - С6, и состав ее характеризуется точками 2, 3 и т.д. Этот процесс будет проходить до тех пор, пока состав нефти не станет таким, который при данных условиях находится в критической точке. Затем двухфазный поток станет однофазным и состав смеси будет изменяться вдоль пласта от области вытесняющего газа до области вытесняемой нефти без поверхности раздела. Таким образом, нефть в процессе нагнетания в пласт жирного газа вытесняется средой, смешивающейся с нефтью.

      
 
 

    Такой процесс в практических условиях возможен лишь при высоких давлениях. На рис. 1.3 приведена диаграмма тройной системы метан—н-бутан—декан при температуре 71°С и различных давлениях. Как следует из этого рисунка, возникновение взаиморастворимой переходной зоны возможно в рассматриваемой системе только при давлениях выше 14 МПа. Если считать, что декан моделирует нефть, а смесь метана с н-бутаном обогащенный сжатый газ, то взаиморастворимое вытеснение будет при пластовом давлении рпл=14,06 МПа и t=71°С, т.е. когда массовая доля н-бутана в метане превысит 25% (точка Е1). С увеличением пластового давления эти условия достигаются при меньших концентрациях н-бутана в метане (при давлении вытеснения 28,1 МПа молярная доля н-бутана в газе может быть уменьшена до 7% (точка Е2).

    Сложность состава нефтей и сложность процесса вытеснения их газом затрудняет разработку расчетных методов определения  условий смешивания различных нефтей и газов. Предложены приближенные способы  определения условий их смешивания, которые можно использовать лишь для ориентировочных расчетов. Бенхем, Дауден и Кунцман предложили приближенный метод оценки минимально необходимой концентрации в газе компонентов этан+высшие, при которой обеспечивается критическое вытеснение нефти. Их метод основан на предположении о параллельности касательной АВ на рис. 1.2 к граничной кривой в критической точке стороне треугольника C1 - С7+. Тогда концентрация компонентов С2 - С6 в системе, находящейся в критическом состоянии, и в нагнетаемом газе А, в котором содержится минимальное количество компонентов С2 - С6, необходимое для воспроизведения критического вытеснения нефти, будут равны. Это означает, что если установить состав условно тройной системы, для которой давление вытеснения и пластовая температура критические, то при этом определяется и состав газа (т.е. минимальное содержание в нем промежуточных). Трудность выбора минимально необходимой концентрации гомологов метана в нагнетаемом газе, таким образом, заключается в том, что касательная АВ, как правило, не параллельна стороне C1 - С7+ и, кроме того, для определения критических параметров таких сложных смесей, как нефть - газ, пока нет достаточно надежных методов. В этой области необходимы дальнейшие изыскания.

    Важной  проблемой развития этого метода увеличения нефтеотдачи пластов является изыскание источников газоснабжения. Заслуживает внимания разработанный советскими инженерами способ производства газа путем газификации сырой нефти непосредственно на нефтяном месторождении под давлением до 20 МПа. Для снижения давлений вытеснения смешивающимися агентами освоено производство обогащенных искусственных газов высокого давления и жидких дистиллятов-растворителей посредством пиролиза нефти в реакторе.

Информация о работе Вытеснение нефти газом