Автор: Пользователь скрыл имя, 30 Августа 2011 в 14:04, курсовая работа
Важнейшей задачей анализа динамических систем управления является решение вопроса об их устойчивости. Техническое понятие устойчивости систем автоматического управления отражает свойство технической системы не только стабильно работать в нормальных режимах, но и "не уходить вразнос" при отклонении всевозможных параметров системы от номинала и влиянии на систему дестабилизирующих воздействий, т. е. способности системе возвращаться к равновесному состоянию, из которого она выводится возмущающими или управляющими воздействиями.
Введение.
1. Критерии устойчивости. Понятие устойчивости системы. Условие устойчивости САУ. Алгебраические критерии устойчивости. Критерий Рауса. Критерий Гурвица.
2. Частотные критерии устойчивости. Принцип аргумента. Критерий устойчивости Михайлова. Критерий устойчивости Найквиста.
3. Запас устойчивости систем. Понятие структурной устойчивости. Понятие запаса устойчивости. Анализ устойчивости по логарифмическим частотным характеристикам.
4. Точность систем. Статическая точность. Динамическая точность.
5. Качество систем. Показатели качества систем управления. Показатели качества переходного процесса. Последовательное корректирующее устройство. Параллельное корректирующее устройство. Метод Солодовникова. Программы анализа качества процессов управления.
6. Случайные процессы в системах. Модели случайных сигналов. Фильтрация помех. Фильтр Винера. Частотная характеристика фильтра.
При синтезе САУ в системе обычно выделяются неизменяемая часть и изменяемая часть, в которую можно вносить коррективы. Неизменяемая часть системы задает возможность получения гарантированного качества. Классическим методом повышения качества системы является метод диаграмм В.В.Солодовникова. Практическая задача оптимизации обычно выполняется с использованием корректирующих устройств.
Последовательное корректирующее устройство. Передаточная функция разомкнутой скорректированной системы равна исходной, умноженной на передаточную функцию корректора. Корректирующее устройство включается последовательно в контуре системы в любом месте. Для исследования подходят ЛАЧХ, так как они складываются при последовательном соединении. ЛАЧХ и ЛФЧХ корректора находятся в виде разности желаемых и имеющихся частотных характеристик системы.
Типичным
последовательным корректирующим устройством
является ПИД- регулятор. Эти пропорционально-интегрально-
Рис. 4.5.3.
ПИД-регулятор (рис. 4.5.3) имеет три параллельных канала: усилитель с коэффициентом kп, интегратор с коэффициентом kи, дифференциатор с коэффициентом kд. Усилитель позволяет изменить коэффициент усиления системы и уменьшить установившуюся ошибку: eуст =1/(1+kп k). Интегратор повышает порядок астатизма на 1. Увеличение kд повышает запас устойчивости и сглаживает переходный процесс, поэтому дифференциальную составляющую называют демпфированием. С помощью интегральной и пропорциональной составляющих можно обеспечить первый порядок астатизма и желаемую статическую точность в ущерб запасу устойчивости, а дифференциальная составляющая повышает запас устойчивости.
Рис. 4.5.4.
Параллельное корректирующее устройство имеет вид местной отрицательной ОС (рис. 4.5.4). Для синтеза параллельных корректирующих устройств использовать логарифмические частотные характеристики менее удобно, чем для последовательных. Существует ряд инженерных методов расчёта параллельных корректоров (например, метод диаграмм Никольса). Можно просто вычислять корректирующую Wкор(p) по желаемой Wзс(p).
Wкор(p) = (W(p)- Wзс(p))/(W(p)Wзс(p)).
Одна из двух передаточных функций Wкор(p) или Wзс(p) обычно не является физически реализуемой. Тем не менее, всегда можно выбрать достаточно близкую реализуемую функцию.
Метод Солодовникова позволяет построить корректирующее звено для имеющейся системы так, чтобы обеспечит требуемые типовые показатели качества и запас устойчивости по амплитуде и фазе. Метод основан на имеющейся связи между частотной характеристикой и переходной функцией:
H(t) = (2/p)
где P(w) – вещественная часть АФЧХ W(jw)=P(w)+jQ(w).
В.В. Солодовников доказал, что в любой системе имеются следующие зависимости между основными показателями качества переходного процесса и Р(ω).
Диаграммы
Солодовникова устанавливают
Рис. 4.5.5.
Область существенных частот (ωн, ωв) - это та часть частотной характеристики, которая в основном определяет качество системы. Диапазон ЛАЧХ для области существенных частот от +26дб. до -16дб. Уровень +26дб. соответствует усилению K=20 и соответствующей установившейся ошибке eуст=1/(1+К) ≈ 0.05, т.е. нижняя частота области существенных частот определяется статической точностью eуст ≈ 0.05 при ступенчатом входном воздействии. Левее частоты ωн ЛАЧХ не ниже +26дб, если не требуется астатизма, либо имеет наклон в зависимости от порядка астатизма. Уровень -16дб. соответствует малости влияния высокочастотных составляющих переходного процесса на уровне ≈ 10%. Наклон ЛАЧХ в области существенных частот должен быть -20дб./дек. На диаграмме Солодовникова по горизонтали отложена второстепенная величина Рмах/Р0, которая в настоящее время используется редко, а по вертикальным осям отложены σ%, tпп и ωс.
Использовать диаграммы Солодовникова (рис. 4.5.5) можно по-разному. Обычно применяется такая методика. Уточняют, какие показатели качества могут быть сформулированы заказчиком, и остальные параметры, необходимые для построения корректирующего устройства, определяют по диаграммам Солодовникова. По графикам можно, например, определить при заданном перерегулировании и времени переходного процесса частоту среза системы: (σ%, tпп) → ωс, n, ∆A, ∆φ. Причём последние три параметра обеспечиваются автоматически. Тогда алгоритм синтеза САУ при исходно заданных σ%, tпп может быть, например, таким:
Программы анализа качества процессов управления. Современные инструментальные средства анализа и синтеза систем управления представлены множеством различных специализированных программных пакетов и комплексов, которые позволяют в диалоговом режиме выполнять операции над матрицами и полиномами, вычислять временные и частотные характеристики, строить корневые годографы, анализировать чувствительность и устойчивость, проверять управляемость и наблюдаемость системы, находить ее полюса и нули, сравнивать переходные процессы в системе по интегральным критериям и находить лучший, определять параметры и характеристики стохастических сигналов на входе и на выходе системы, составлять и преобразовывать математические модели исследуемой системы.
Эти программные средства обладают развитым сервисом, что позволяет строить и сравнивать графики нескольких процессов, изображать взаимные зависимости, фазовые кривые и портреты, строить характеристики и диаграммы, изображать и преобразовывать структурные модели системы, при этом графические построения могут быть выполнены в двух- и трехмерном представлении.
Известны фирменные и университетские программные пакеты анализа и синтеза систем управления: LSАР – США (Ливерморская национальная лаборатория) ТUТSIМ – США (Станфордский университет); СLADP – Великобритания (Кембридж); КЕDDС – Германия (Рурский университет); МАТRIХ - фирмы Integrated Systems Inc.; SIMULINK в среде МАТLАВ известной фирмы Маth Works Inc.; МАRS – Украина (Институт кибернетики). Среди отечественных инструментальных программных средств известны разработки Академии авиационного и космического приборостроения, Санкт-Петербург; Московского инженерно-физического института; Московского государственного технического университета; Института проблем управления РАН, Москва.
Программные комплексы ТUТSIМ, МАТRIХ, SIMULINK позволяют исследовать модели любых динамических систем, которые испытывают любые внешние воздействия. Комплексы обеспечивают команды изменения структуры модели, ее параметров, выходных блоков и диапазонов рассчитываемых данных; команды одиночного и многократного запуска, останова и продолжения процесса моделирования с выводом графиков и числовых данных на экран, принтер или в файл; команды графического сервиса, позволяющие изображать оси, сетку, маркировку, комментарии к графикам, строить фазовые кривые или взаимозависимости и прочее. Комплексы располагают различными функциональными блоками для моделирования любых непрерывных и дискретных, линейных и нелинейных динамических систем, испытывающих детерминированные и стохастические воздействия.
4.6. СЛУЧАЙНЫЕ ПРОЦЕССЫ В СИСТЕМАХ [8].
В реальных системах имеются помехи (возмущения), действующие в каналах передачи информации. Часто не имеется никакой, кроме статистической, информации об этих факторах, что заставляет считать эти параметры случайными величинами с заранее неизвестными законами распределения. Так возникает задача управления в условиях неопределенности. Здесь имеются два аспекта: управление в условиях неопределенности и задача борьбы с помехами.
Модели случайных сигналов. Случайные процессы и отображающие их сигналы будем считать функциями времени, принимающими случайные значения. В каждый момент времени, значение случайного процесса есть случайная величина x(t). Основной характеристикой случайной величины в момент времени t является функция p(x,t) - плотность вероятности в момент t. Плотность вероятности определяет функции математического ожидания и дисперсии случайных величин:
Mx(t)
=
Для описания статистической взаимосвязи значений x(t) в разные моменты времени вводятся корреляционная функция сигнала x(t):
Kx(t1,t2) = M[(x(t1)-Mx(t1)) (x(t2)-Mx(t2))],
и взаимная корреляционная функция сигналов x(t) и y(t):
Kxу(t1,t2) = M[(x(t1)-Mx(t1)) (y(t2)-My(t2))].
Отметим, что Kx(t,t) = Dx(t), т.е. при t1 = t2 = t это есть дисперсия в момент времени t.
Стационарным случайным процессом называется такой случайный процесс, для которого корреляционная функция зависит не от абсолютных значений t1 и t2, а только от их разности K(t1,t2) = K(t1-t2) = K(t). Дисперсия и математическое ожидание для стационарного случайного процесса являются константами. Стационарный случайный процесс для САУ не меняет своих статистических характеристик за время жизни системы.
Спектральная плотность S(ω) стационарного случайного процесса, есть преобразование Фурье от корреляционной функции K(τ). Соответственно, корреляционная функция K(τ) есть обратное преобразование Фурье спектральной плотности S(ω):
S(w)
=
Спектральная плотность случайного процесса описывает разложение мощности процесса по гармоническим составляющим. Можно выразить дисперсию через интеграл от спектральной плотности. Это означает, что дисперсия есть суммарная мощность случайного процесса, распределённая по частоте:
Информация о работе Устойчивость систем автоматического управления