Наука в Эпоху Возрождения

Автор: Пользователь скрыл имя, 19 Января 2012 в 16:41, реферат

Описание работы

Культура Ренессанса зародилась во второй половине ХIVв. И продолжала развиваться на протяжении ХV и ХVI вв., постепенно охватывая одну за другой, все страны Европы. Возникновение культуры Возрождения было подготовлено рядом общеевропейских и локальных исторических условий.
В XIV - XV вв. зарождались раннекапиталистические, товарно-денежные отношения. Одной из первых вступила на этот путь Италия, чему в немалой степени способствовали: высокий уровень урбанизации, подчинение деревни городу, широкий размах ремесленного производства, финансового дела, ориентированных не только на внутренний, но и на внешний рынок .

Работа содержит 1 файл

культурология Word.doc

— 155.50 Кб (Скачать)

Был осуждён католической церковью как еретик и приговорён светскими судебными властями Рима к смертной казни через сожжение. В 1889 году, спустя почти три столетия, на месте казни Джордано Бруно был воздвигнут памятник в его честь.

Космология.

Развивая гелиоцентрическую теорию Коперника и философию Николая Кузанского, Бруно высказывал ряд догадок: об отсутствии материальных небесных сфер, о безграничности Вселенной, о том, что звёзды — это далёкие солнца, вокруг которых вращаются планеты, о существовании неизвестных в его время планет в пределах нашей Солнечной системы. Отвечая противникам гелиоцентрической системы, Бруно привёл ряд физических доводов в пользу того, что движение Земли не сказывается на ход экспериментов на её поверхности[8], опровергая также доводы против гелиоцентрической системы, основанные на католическом толковании Священного Писания..

 В  противоположность бытовавшим в  то время мнениям, он полагал  кометы небесными телами, а не  испарениями в земной атмосфере.  Бруно отвергал средневековые  представления о противоположности  между Землёй и небом, утверждая физическую однородность мира (учение о 5 элементах, из которых состоят все тела, — земляводаогоньвоздух и эфир). Он предположил возможность жизни на других планетах.

В мышлении Бруно  причудливо сочеталось мистическое  и естественнонаучное понимание  мира. По мнению ряда авторов, энтузиазм, с которым Джордано Бруно приветствовал открытия Коперника, объяснялся его уверенностью в том, что гелиоцентрическая теория таит в себе глубокий религиозный и магический смысл (во время своего пребывания в Англии Бруно проповедовал необходимость возврата к магической религии Египта в том виде, как она изложена в трактате «Asclepius».). Коперника Бруно называет «зарёй, которая должна предшествовать восходу солнца истинной античной философии».  

                                              Галилео Галилей.

Итальянский физикмеханикастрономфилософ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел[1] и сделал ряд выдающихся астрономических открытий. Галилей — основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундаментклассической механики.

При жизни был  известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью. 

Научные достижения.

Галилей по праву  считается основателем не только экспериментальной, но — в значительной мере — и теоретической физики. В своём научном методе он осознанно сочетал продуманный эксперимент с его рациональным осмыслением и обобщением, и лично дал впечатляющие примеры таких исследований. Иногда из-за недостатка научных данных Галилей ошибался (например, в вопросах о форме планетных орбит, природе комет или причинах приливов), но в подавляющем большинстве случаев его метод приводил к цели. Характерно, что Кеплер, располагавший более полными и точными данными, чем Галилей, сделал правильные выводы в тех случаях, когда Галилей ошибался.

[Механика

Физика и механика в те годы изучались по сочинениям Аристотеля, которые содержали метафизические рассуждения о «первопричинах» природных процессов. В частности, Аристотель утверждал:

  • Скорость падения пропорциональна весу тела.
  • Движение происходит, пока действует «побудительная причина» (сила), и в отсутствие силы прекращается.

В своей последней  книге Галилей сформулировал  правильные законы падения: скоростьнарастает пропорционально времени, а путь — пропорционально квадрату времени. В соответствии со своим научным методом он тут же привёл опытные данные, подтверждающие открытые им законы. Более того, Галилей рассмотрел (в 4-й день «Бесед») и обобщённую задачу: исследовать поведение падающего тела с ненулевой горизонтальной начальной скоростью. Он совершенно правильно предположил, что полёт такого тела будет представлять собой суперпозицию (наложение) двух «простых движений»: равномерного горизонтального движения по инерции и равноускоренного вертикального падения. Галилей доказал, что указанное, а также любое брошенное под углом к горизонту тело летит попараболе. В истории науки это первая решённая задача динамики. В заключение исследования Галилей доказал, что максимальная дальность полёта брошенного тела достигается для угла броска 45° (ранее это предположение высказал Тарталья, который, однако, не смог его строго обосновать). На основе своей модели Галилей (ещё в Венеции) составил первые артиллерийские таблицы.

Галилей опроверг и второй из приведённых законов  Аристотеля, сформулировав первый закон механики (закон инерции): при отсутствии внешних сил тело либо покоится, либо равномерно движется. То, что мы называем инерцией, Галилей поэтически назвал «неистребимо запечатлённое движение». Правда, он допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Правильную формулировку закона позднее дали Декарт и Ньютон; тем не менее общепризнанно, что само понятие «движение по инерции» впервые введено Галилеем, и первый закон механики по справедливости носит его имя.

Галилей является одним из основоположников принципа относительности в классической механике, который также был позже назван в его честь. В «Диалоге о двух системах мира» Галилей сформулировал принцип относительности следующим образом:

]Астрономия

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклымобъективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза.

Первые телескопические  наблюдения небесных тел Галилей  провёл 7 января 1610 года. Эти наблюдения показали, что Луна, подобно Земле, имеет сложный рельеф — покрыта горами и кратерами. Известный с древних времен пепельный свет Луны Галилей объяснил как результат попадания на наш естественный спутник солнечного света, отражённого Землёй. Всё это опровергало учение Аристотеля о противоположности «земного» и «небесного»: Земля стала телом принципиально той же природы, что и небесные светила, а это, в свою очередь, служило косвенным доводом в пользу системы Коперника: если другие планеты движутся, то естественно предположить, что движется и Земля. Галилей обнаружил также либрацию Луны и довольно точно оценил высоту лунных гор.

У Юпитера обнаружились собственные луны — четыре спутника. Тем самым Галилей опроверг один из доводов противников гелиоцентризма: Земля не может вращаться вокруг Солнца, поскольку вокруг неё самой вращается Луна. Ведь Юпитер заведомо должен был вращаться либо вокруг Земли (как в геоцентрической системе), либо вокруг Солнца (как вгелиоцентрической). Полтора года наблюдений позволили Галилею оценить период обращения этих спутников (1612), хотя приемлемая точность оценки была достигнута только в эпоху Ньютона. Галилей предложил использовать наблюдения затмений спутников Юпитера для решения важнейшей проблемы определениядолготы на море. Сам он не смог разработать реализацию подобного подхода, хотя работал над ней до конца жизни; первым успеха добился Кассини (1681), однако из-за трудностей наблюдений на море метод Галилея применялся в основном сухопутными экспедициями, а после изобретения морского хронометра (середина XVIII века) проблема была закрыта.

Галилей разъяснил, отчего земная ось не поворачивается при обращении Земли вокруг Солнца; для объяснения этого явления  Коперник ввёл специальное «третье  движение» Земли. Галилей показал  на опыте, что ось свободно движущегося  волчка сохраняет своё направление сама собой («Письма к Инголи»):

Подобное явление  очевидным образом обнаруживается у всякого тела, находящегося в  свободно подвешенном состоянии, как  я показывал многим; да и вы сами можете в этом убедиться, положив  плавающий деревянный шар в сосуд с водою, который вы возьмете в руки, и затем, вытянув их, начнете вращаться вокруг самого себя; вы увидите, как этот шар будет поворачиваться вокруг себя в сторону, обратную вашему вращению; он закончит свой полный оборот в то же самое время, как вы закончите ваш.

Вместе с тем, Галилей сделал серьёзную ошибку, полагая, что явление приливов доказывает вращение Земли вокруг оси. Впрочем, он приводит и другие серьёзные аргументы в пользу суточного вращения Земли: Трудно согласиться с тем, что вся Вселенная совершает суточный оборот вокруг Земли (особенно учитывая колоссальные расстояния до звёзд); более естественно объяснить наблюдаемую картину вращением одной Земли. Синхронное участие планет в суточном вращении нарушало бы также наблюдаемую закономерность, согласно которой, чем дальше планета от Солнца, тем медленнее она движется.

  • Даже у огромного Солнца обнаружено осевое вращение.

Галилей описывает  здесь же мысленный эксперимент, который мог бы доказать вращение Земли: пушечный снаряд или падающее тело за время падения немного отклоняются от вертикали; однако приведенный им расчёт показывает, что это отклонение ничтожно. Он сделал верное замечание, что вращение Земли должно влиять на динамику ветров. Все эти эффекты были обнаружены много позже.

Математика

К теории вероятностей относится его исследование об исходах при бросании игральных костей. В его «Рассуждении об игре в кости» («Considerazione sopra il giuoco dei dadi», время написания неизвестно, опубликовано в 1718 году) проведён довольно полный анализ этой задачи.

В «Беседах о  двух новых науках» он сформулировал  «парадокс Галилея»: натуральных чисел столько же, сколько их квадратов, хотя бо́льшая часть чисел не являются квадратами. Это подтолкнуло в дальнейшем к исследованию природы бесконечных множеств и их классификации; завершился процесс созданием теории множеств.

]Другие достижения

Галилей изобрёл:

  • Гидростатические весы для определения удельного веса твёрдых тел. Галилей описал их конструкцию в трактате «La bilancetta»(1586).
  • Первый термометр, ещё без шкалы (1592).
  • Пропорциональный циркуль, используемый в чертёжном деле (1606).
  • Микроскоп, плохого качества (1612); с его помощью Галилей изучал насекомых.

Информация о работе Наука в Эпоху Возрождения