Строение из стекла

Автор: Пользователь скрыл имя, 18 Декабря 2011 в 16:31, реферат

Описание работы

Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наиболее распространены кристаллические твердые вещества, для структуры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризуется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температуры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, скорости растворения и роста кристаллов и др.) неодинаковы при измерении в различных направлениях.

Работа содержит 1 файл

стёкла.doc

— 237.50 Кб (Скачать)

  Промышленное  значение приобретают способы получения  стекол путем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.

  Облучение кристаллов частицами высоких энергий  или воздействие на них ударной  волны приводит к неупорядоченному смещению частиц из положений равновесия и, таким образом, к аморфизации структуры, в результате чего твердые кристаллические вещества могут быть переведены в стеклообразное состояние, минуя стадию плавления.

5.  СТЕКЛЯННОЕ ВОЛОКНО

Классификация стеклянных волокон  и их составы

Стеклянным  волокном (СВ) называют искусственное волокно, изготовляемое различными способами из расплавленного стекла.

    Известно два основных вида  СВ: непрерывное и штапельное. Для  непрерывного волокна, получаемого  вытягиванием из расплава стекла, характерна неограниченно большая  длина, прямолинейность и параллельное расположение волокон в нити. Штапельное волокно, получаемое путем расчленения струи расплавленного стекла воздухом, паром или газовым потоком, отличает небольшая длина, извитость и хаотическое расположение волокон в пространстве. Изделия из непрерывного волокна по внешнему виду напоминают натуральный или искусственный шелк, а из штапельного—хлопок или шерсть.

    Стеклянные волокна различного  химического состава обладают  ценными свойствами — негорючестью, стойкостью к коррозии, высокой прочностью, сравнительно малой плотностью, высокими оптическими, диэлектрическими и теплофизическими свойствами, что позволяет их применять в различных областях техники, главным образом, для изготовления текстильных материалов и изделий (нитей, жгутов, лент, и нетканых материалов). Штапельные СВ в процессе их получения формируют в виде ваты, матов и холстов, скрепляемых органическими и неорганическими связующими.

   Материалы из непрерывных и  штапельных стеклянных волокон  широко используются в электротехнической промышленности, машиностроении, химической промышленности, строительстве и других отраслях народного хозяйства.

   Большую часть изделий из непрерывных  стеклянных волокон применяют в качестве армирующих материалов: стеклотканей, стеклопластиков, композитов и стеклоцемента при изготовлении электроизоляции, коррозионно-стойких трубопроводов и емкостей — в химической, автомобильной промышленности, строительстве, железнодорожном транспорте, судостроении, авиационной, космической технике и др.

   Материалы из штапельного волокна  используют для теплозвуко-электроизоляции,  фильтрации химически агрессивных  сред и др.

   Для получения стеклянных волокон  с различными показателями свойств  синтезируют стекла, обеспечивающие  эти свойства, но одновременно обладающие стабильностью процесса волокнообразования в заданном интервале температур. Способность стекломассы вытягиваться в волокно определяется отношением ее вязкости к поверхностному натяжению. На стабильность процесса волокнообразования в значительной степени оказывает влияние кристаллизационная способность стекла (температура плавления кристаллов, скорость образования центров кристаллов, скорость линейного роста кристаллов), вязкость, скорость твердения, химическая однородность стекломассы и содержание в ней газов.

  Для производства СВ применимы стекла с  температурой ликвидуса на 30—50°С ниже температуры его формования, поэтому составы стекол, пригодные для формования стеклянных волокон различного назначения, отличаются от известных рецептур «массивных» стекол.

  Качество  стекла для выработки стекловолокна  в значительной степени зависит от гомогенизации и дегазации стекломассы, использования комплексного тонко измельченного сырья, высокой температуры варки стекла (1600°С и выше), принудительного перемешивания стекломассы, применения стекло стойких огнеупоров и др.

  Для варки стекол в производстве стеклянных волокон применяют горшковые, ванные печи непрерывного действия, пламенные  печи прямого нагрева, электрические и газоэлектрические стекловаренные печи.

  Для получения стеклянных волокон стекла синтезируют в различных стеклообразных системах используя:

1) бесщелочные,  алюмоборосиликатные стекла, содержащие  до 0,5— 2,0 % по массе R2О — тип Е (электроизоляционного назначения);

2) бесщелочные  или малощелочные натриево-кальциево-алюмо-боро-силикатные стекла (до 10 % по массе R2О) —тип С (химически устойчивые);

3) щелочные—натриево-кальциево-силикатные  стекла, содержащие более 10% по  массе RzO—тип А (тепло—звукоизоляция);

4) бесщелочные  магнийалюмосиликатные и другого состава стекла (высокопрочные и высокомодульные);

5) бесщелочные  из оксидов тугоплавких металлов  или их соединений стекла (кварцевые, высококремнеземные, алюмокремнеземные, алю-мосиликатные и другие высокотемпературостойкие).

 Во  фторфосфатных стеклах, содержащих до 40— 50 мол. % соединений редкоземельных элементов, получены фтороустойчивые материалы с интересными магнитооптическими и сцинтилляционными свойствами. Особый интерес в настоящее время представляют фторфосфатные стекла, которые по своим оптическим свойствам являются ближайшими аналогами фторобериллатных, а также фторборатные стекла, обладающие сочетанием сравнительно низких ТКЛР (50—120) и температур растекания (400—600 °С) и поэтому перспективные для спаивания различных материалов. 

  1. ЭМАЛИ И ПОКРЫТИЯ

6.1 ТЕХНОЛОГИЯ ЭМАЛЕЙ  И НЕОРГАНИЧЕСКИХ  ПОКРЫТИИ

Физико-химические основы эмалирования

Эмаль представляет собой стеклообразное (или преимущественно стеклообразное) вещество, в основном состоящее из оксидов, полученное плавлением или фриттованием (неполным плавлением), которое одним или несколькими слоями наносят на металлическое изделие. В технологии эмали существует та же проблема, что и при изготовлении металлостеклянных спаев — согласование физико-механических характеристик металлической и оксидной систем для обеспечения их прочного сцепления и допустимого уровня напряжений в обеих составляющих. В связи с этим разные металлы эмалируют разными эмалями. Известно и общее требование: обычно формирование бездефектного покрытия и процессы, обеспечивающие сцепление, следует вести при вязкости эмали около 100 Па-с и поверхностном натяжении около 300 мДж/м2.

Химический  состав эмали определяется назначением  эмалевого покрытия и характеристиками защищаемого металла. Области применения эмалевых покрытий столь разнообразны, что выделение каких-либо общих физико-химических их характеристик, как и у стекол, невозможно. В отличие от стекла, структурные превращения в эмали оказывают значительно большее влияние на совокупность эксплуатационных свойств покрытия. Эти преобразования имеют существенное значение и для достижения прочного сцепления эмали в твердом состоянии с металлом.

Процессы, обусловливающие сцепление эмали  с металлом, более подробно исследованы  для черных металлов. В этом случае применяют эмали на основе щелочноборосиликатных стекол с введением в качестве способствующих адгезии и сцеплению оксидов переходных металлов—кобальта, никеля, марганца, меди и т. д. (так называемых оксидов сцепления). Эти исследования привели к возникновению ряда ги-' потез (электрохимическая, механическая и др.), имеющих описательный характер и взаимно дополняющих друг друга. Начальными стадиями процесса, обеспечивающего сцепление твердой эмали с металлом, являются смачивание и химическое взаимодействие металла с эмалью или стекловидной составляющей неорганического эмалевого покрытия. А. А. Аппен показал целесообразность анализа при исследовании этого процесса следующих основных критериев: изобарных потенциалов реакций, протекающих в моноатомном пограничном слое и определяющих состав и строение новообразований на поверхности раздела соприкасающихся фаз; средних энергий единичных связей металл — кислород (или другой анион), либо средних значений энергий атомизации соединений на поверхности раздела эмаль — металл; нормальных электродных потенциалов на этой границе; степени недостроенности электронных оболочек атомов на границе раздела соприкасающихся фаз и статистического веса атомов со стабильными электронными конфигурациями; разрядного потенциала и плотности заряда на границе металл — неорганический диэлектрик (стекло).

  Во  многих случаях сцепление определяется не столько этими критериями, сколько составом и свойствами переходного слоя толщиной в десятки микрометров, образующегося в результате взаимодействия эмали с металлом. Однако во всех случаях особо велика роль площади действительного контакта металла с эмалевым покрытием, которая зависит не только от состава эмали, но и от всей технологии формирова. ния покрытия.

   Первоначально целью эмалирования было создание декоративного эффекта, в основном, на изделиях из драгоценных металлов. Высокого художественного уровня декоративное эмалирование достигло в начале нашей эры в Византии, что оказало существенное влияние на развитие этой техники в других странах, в том числе и в Киевской Руси. При изготовлении украшений с использованием техники «перегородчатых» и «выемчатых» эмалей ювелир должен был решать задачу прочного соединения эмалей с металлами и обеспечить многообразие цветов и оттенков покрытия. Для изготовления эмалированных ювелирных изделий и в настоящее время применяют низкопробные сплавы драгоценных металлов, при их эмалировании можно использовать многообразные возможности окрашивания стекла.

  Наряду  с традиционным применением в  качестве декоративных покрытий на изделиях бытового и технического назначения, эмалевые покрытия все в возрастающей степени призваны решать задачу антикоррозийной защиты металлов в самых разнообразных областях. Известно, что в результате коррозии ежегодно теряется около 10 % мирового выпуска черных металлов.

  Развитие  науки и техники связано с  использованием все более высоких температур. По этой причине непрерывно возрастают требования к защите разнообразных металлов и, в первую очередь, жаропрочных сталей и сплавов от газовой коррозии, в особенности от окисления. Эту задачу призваны решать жаропрочные эмали и покрытия. Современная техника нуждается, например, в аппаратуре, работоспособной в парах серы до 1000°С, иода и иодидов—до 1100°С, в хлоре и хлористом водороде—при 400—600°С, в парах пентоксида ванадия, содержащихся в продуктах сгорания и переработки нефти,—при 500—700°С. При таких высоких температурах многие стекла ведут себя не как твердое тело, а как высоковязкая жидкость, и не могут обеспечить длительной эксплуатации изделия. В указанных условиях работоспособными могут быть лишь кристаллические соединения. Таким образом, для решения подобных задач технология эмалирования должна использовать метод направленной кристаллизации эмалей или основываться на введении в покрытие при его формировании значительных количеств кристаллических огнеупорных наполнителей.

  В то же время усиливающийся интерес  вызывает и технология эмалирования легких сплавов, особенностью которой является применение возможно более легкоплавких эмалей. Например, алюминий чистотой 99,5 % имеет температуру плавления 658°С, а температура плавления эвтектик в литейных алюминиевых сплавах лежит около 450°С. Таким образом, температура формирования эмалевого покрытия на этих сплавах должна существенно различаться, чтобы избежать деформации изделий. Особые трудности возникают при необходимости обеспечения электрической изоляции или антикоррозионной защиты полупроводниковых металлов — кремния, германия и т. п., так как для сохранения их характеристик температура их нагрева не может превышать 300-350 °С.

   При выборе металла и соответствующей  эмали наряду с температурой плавления металла и температурой, обеспечивающей достаточно низкую вязкость эмали при формировании покрытия, следует учитывать и температуры, до которых работоспособны металлическая основа и эмаль. Ползучесть и рекристаллизация металла и релаксационные процессы в эмали могут приводить к изменению напряженного состояния системы, способного вызвать разрушения связи металл — эмалевое покрытие. Другими важными факторами разрушения могут быть при более низких температурах тот или иной вид коррозии, при достаточно высоких температурах—диффузионные процессы на границе раздела металл — эмаль. Действие этих факторов проявляется во время эксплуатации покрытия; неблагоприятные напряжения могут вызвать разрушение покрытия уже в процессе его нанесения.

Величинами, определяющими напряженное состояние  системы эмаль — металл при  заданной температуре, являются разница  термических коэффициентов линейного расширения, соотношение модулей упругости и сдвига и толщины слоев металла и эмали. Значения указанных свойств материалов существенно изменяются с температурой. В случае стекла (эмали) эти изменения особенно значительны вблизи температуры стеклования, где ТКЛР, например, может возрастать в 2-Зраза.

   Многие сплавы, особенно чугун,  меняют свою структуру при  нагревании до температуры формирования покрытия. Эти преобразования находят свое выражение в изменении не только ТКЛР, но и объема металла, что создает дополнительные трудности при эмалировании. Жаростойкие металлы, например, Та, Мо, Mb, W и V, и некоторые их соединения относительно легко окисляются на воздухе. Оксиды этих металлов, образующиеся на поверхности, летучи и непрочно связаны с металлом; рост пленки оксидов при обжиге покрытия и недостаточная скорость ее растворения в эмали часто являются причиной потери адгезии и отслаивания покрытия. Вместе с тем экспериментально установлено, что достаточно хорошее сцепление эмалевого покрытия с большей частью металлов достигается при обжиге в кислородсодержащей среде. В этом случае на поверхности образуется пленка из оксидов (например, железа), взаимодействующих с эмалью и растворяющихся в ней с образованием переходного слоя. При эмалировании черных металлов процесс сцепления стимулируют добавками в эмаль или на поверхность эмалируемого изделия указанных выше оксидов сцепления — Ni2O5 и т. д. При обжиге в инертной атмосфере сцепление эмали с некоторыми металлами обеспечивается образованием переходного слоя, содержащего новые соединения, например, интер-металлиды.

Информация о работе Строение из стекла