Автор: Пользователь скрыл имя, 18 Декабря 2011 в 16:31, реферат
Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наиболее распространены кристаллические твердые вещества, для структуры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризуется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температуры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, скорости растворения и роста кристаллов и др.) неодинаковы при измерении в различных направлениях.
Промышленное значение приобретают способы получения стекол путем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.
Облучение кристаллов частицами высоких энергий или воздействие на них ударной волны приводит к неупорядоченному смещению частиц из положений равновесия и, таким образом, к аморфизации структуры, в результате чего твердые кристаллические вещества могут быть переведены в стеклообразное состояние, минуя стадию плавления.
5. СТЕКЛЯННОЕ ВОЛОКНО
Классификация стеклянных волокон и их составы
Стеклянным волокном (СВ) называют искусственное волокно, изготовляемое различными способами из расплавленного стекла.
Известно два основных вида
СВ: непрерывное и штапельное. Для
непрерывного волокна,
Стеклянные волокна различного химического состава обладают ценными свойствами — негорючестью, стойкостью к коррозии, высокой прочностью, сравнительно малой плотностью, высокими оптическими, диэлектрическими и теплофизическими свойствами, что позволяет их применять в различных областях техники, главным образом, для изготовления текстильных материалов и изделий (нитей, жгутов, лент, и нетканых материалов). Штапельные СВ в процессе их получения формируют в виде ваты, матов и холстов, скрепляемых органическими и неорганическими связующими.
Материалы из непрерывных и штапельных стеклянных волокон широко используются в электротехнической промышленности, машиностроении, химической промышленности, строительстве и других отраслях народного хозяйства.
Большую часть изделий из
Материалы из штапельного
Для получения стеклянных
Для производства СВ применимы стекла с температурой ликвидуса на 30—50°С ниже температуры его формования, поэтому составы стекол, пригодные для формования стеклянных волокон различного назначения, отличаются от известных рецептур «массивных» стекол.
Качество стекла для выработки стекловолокна в значительной степени зависит от гомогенизации и дегазации стекломассы, использования комплексного тонко измельченного сырья, высокой температуры варки стекла (1600°С и выше), принудительного перемешивания стекломассы, применения стекло стойких огнеупоров и др.
Для варки стекол в производстве стеклянных волокон применяют горшковые, ванные печи непрерывного действия, пламенные печи прямого нагрева, электрические и газоэлектрические стекловаренные печи.
Для
получения стеклянных волокон стекла
синтезируют в различных
1) бесщелочные, алюмоборосиликатные стекла, содержащие до 0,5— 2,0 % по массе R2О — тип Е (электроизоляционного назначения);
2) бесщелочные
или малощелочные натриево-кальциево-алюмо-боро-
3) щелочные—натриево-кальциево-
4) бесщелочные магнийалюмосиликатные и другого состава стекла (высокопрочные и высокомодульные);
5) бесщелочные
из оксидов тугоплавких
Во
фторфосфатных стеклах, содержащих до
40— 50 мол. % соединений редкоземельных
элементов, получены фтороустойчивые
материалы с интересными магнитооптическими
и сцинтилляционными свойствами. Особый
интерес в настоящее время представляют
фторфосфатные стекла, которые по своим
оптическим свойствам являются ближайшими
аналогами фторобериллатных, а также фторборатные
стекла, обладающие сочетанием сравнительно
низких ТКЛР (50—120) и температур растекания
(400—600 °С) и поэтому перспективные для
спаивания различных материалов.
6.1 ТЕХНОЛОГИЯ ЭМАЛЕЙ И НЕОРГАНИЧЕСКИХ ПОКРЫТИИ
Физико-химические основы эмалирования
Эмаль
представляет собой стеклообразное
(или преимущественно
Химический состав эмали определяется назначением эмалевого покрытия и характеристиками защищаемого металла. Области применения эмалевых покрытий столь разнообразны, что выделение каких-либо общих физико-химических их характеристик, как и у стекол, невозможно. В отличие от стекла, структурные превращения в эмали оказывают значительно большее влияние на совокупность эксплуатационных свойств покрытия. Эти преобразования имеют существенное значение и для достижения прочного сцепления эмали в твердом состоянии с металлом.
Процессы,
обусловливающие сцепление
Во многих случаях сцепление определяется не столько этими критериями, сколько составом и свойствами переходного слоя толщиной в десятки микрометров, образующегося в результате взаимодействия эмали с металлом. Однако во всех случаях особо велика роль площади действительного контакта металла с эмалевым покрытием, которая зависит не только от состава эмали, но и от всей технологии формирова. ния покрытия.
Первоначально целью
Наряду с традиционным применением в качестве декоративных покрытий на изделиях бытового и технического назначения, эмалевые покрытия все в возрастающей степени призваны решать задачу антикоррозийной защиты металлов в самых разнообразных областях. Известно, что в результате коррозии ежегодно теряется около 10 % мирового выпуска черных металлов.
Развитие науки и техники связано с использованием все более высоких температур. По этой причине непрерывно возрастают требования к защите разнообразных металлов и, в первую очередь, жаропрочных сталей и сплавов от газовой коррозии, в особенности от окисления. Эту задачу призваны решать жаропрочные эмали и покрытия. Современная техника нуждается, например, в аппаратуре, работоспособной в парах серы до 1000°С, иода и иодидов—до 1100°С, в хлоре и хлористом водороде—при 400—600°С, в парах пентоксида ванадия, содержащихся в продуктах сгорания и переработки нефти,—при 500—700°С. При таких высоких температурах многие стекла ведут себя не как твердое тело, а как высоковязкая жидкость, и не могут обеспечить длительной эксплуатации изделия. В указанных условиях работоспособными могут быть лишь кристаллические соединения. Таким образом, для решения подобных задач технология эмалирования должна использовать метод направленной кристаллизации эмалей или основываться на введении в покрытие при его формировании значительных количеств кристаллических огнеупорных наполнителей.
В то же время усиливающийся интерес вызывает и технология эмалирования легких сплавов, особенностью которой является применение возможно более легкоплавких эмалей. Например, алюминий чистотой 99,5 % имеет температуру плавления 658°С, а температура плавления эвтектик в литейных алюминиевых сплавах лежит около 450°С. Таким образом, температура формирования эмалевого покрытия на этих сплавах должна существенно различаться, чтобы избежать деформации изделий. Особые трудности возникают при необходимости обеспечения электрической изоляции или антикоррозионной защиты полупроводниковых металлов — кремния, германия и т. п., так как для сохранения их характеристик температура их нагрева не может превышать 300-350 °С.
При выборе металла и
Величинами,
определяющими напряженное
Многие сплавы, особенно чугун, меняют свою структуру при нагревании до температуры формирования покрытия. Эти преобразования находят свое выражение в изменении не только ТКЛР, но и объема металла, что создает дополнительные трудности при эмалировании. Жаростойкие металлы, например, Та, Мо, Mb, W и V, и некоторые их соединения относительно легко окисляются на воздухе. Оксиды этих металлов, образующиеся на поверхности, летучи и непрочно связаны с металлом; рост пленки оксидов при обжиге покрытия и недостаточная скорость ее растворения в эмали часто являются причиной потери адгезии и отслаивания покрытия. Вместе с тем экспериментально установлено, что достаточно хорошее сцепление эмалевого покрытия с большей частью металлов достигается при обжиге в кислородсодержащей среде. В этом случае на поверхности образуется пленка из оксидов (например, железа), взаимодействующих с эмалью и растворяющихся в ней с образованием переходного слоя. При эмалировании черных металлов процесс сцепления стимулируют добавками в эмаль или на поверхность эмалируемого изделия указанных выше оксидов сцепления — Ni2O5 и т. д. При обжиге в инертной атмосфере сцепление эмали с некоторыми металлами обеспечивается образованием переходного слоя, содержащего новые соединения, например, интер-металлиды.