Автор: Пользователь скрыл имя, 18 Декабря 2011 в 16:31, реферат
Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наиболее распространены кристаллические твердые вещества, для структуры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризуется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температуры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, скорости растворения и роста кристаллов и др.) неодинаковы при измерении в различных направлениях.
1. СТЕКЛООБРАЗНОЕ СОСТОЯНИЕ
Вещества
в твердом состоянии при
Стеклообразное состояние вещества представляет собой аморфную разновидность твердого состояния. Стеклообразное состояние является метастабильным, т. е. характеризуется избытком внутренней энергии. Пространственное расположение частиц вещества, находящегося в стеклообразном состоянии, является неупорядоченным, что подтверждается результатами рентгеноструктурных исследований.
Согласно законам химической термодинамики переход веществ из стеклообразного состояния в кристаллическое должен осуществляться самопроизвольно, однако высокая вязкость твердых веществ делает невозможным поступательное движение частиц, направленное на перестройку структуры. В твердых телах частицы совершают только колебательные движения относительно положения равновесия.
2. СТРОЕНИЕ СТЕКЛА
Физические свойства веществ зависят от их состава и строения. Строение стекол является одним из разделов единой проблемы строения вещества. В связи с этим необходимо подчеркнуть, что современные представления о строении стекла базируются на фундаментальных положениях теоретических разделов неорганической и физической химии, кристаллохимии, химии и физики твердого состояния, и, кроме того, включают идеи и обобщенные положения отдельных гипотез строения стекла, основу которых составляют эмпирические зависимости свойств от состава и строения.
Отсутствие прямых методов исследования аморфных веществ, отсутствие способов плоскостного изображения объемно неупорядоченных структур пока не позволяют создать завершенную теорию строения стекла.
Существует
несколько теоретических
Учитывая сложность и многоплановость вопроса строения стекла, ограничимся рассмотрением основных положений кристаллохимического и валентно-химического направлений, иллюстрируя их конкретными примерами строения силикатных стекол по мере усложнения их состава — от простейшего по составу однокомпонентного кварцевого стекла до двух-, трех- и многокомпонентных составов промышленных стекол.
2.1 Кристаллохимическое описание строения стекол
В основе данного описания лежат понятия ближнего и дальнего порядка в структуре веществ. Ближний порядок в общем случае, означает правильное расположение отдельных атомов относительно некоторого фиксированного атома. Для оксидных стекол ближний порядок характеризует расположение атомов кислорода относительно катионов. Например, атомы кремния всегда окружены четырьмя атомами кислорода. Координационные группировки [SiО2]4 сохраняются в расплавленном, кристаллическом или стеклообразном состояниях диоксида кремния. Это означает, что в структуре стекла сохраняется ближний порядок в расположении анионов относительно катионов кремния, характерный для координационной структуры кристаллов.
Дальним порядком называется строго периодическое и последовательное расположение атомов или группировок из атомов в пространстве, которое обусловливает образование единой трехмерной решетки.
Если для кристаллических структур характерно наличие ближнего и дальнего порядков, то особенность строения стекол состоит в том, что в их структуре имеется ближний порядок, но отсутствует дальний порядок в расположении координационных групп атомов. Отсутствие дальнего порядка в структуре характерно для жидкостей и аморфных тел.
Основными элементами структуры силикатных стекол являются тетраэдры [SiО4]4, которые, соединяясь, друг с другом вершинами, способны образовывать непрерывную в одном, двух, или трех измерениях пространственную структуру (структурную сетку по Захариасену).
Протяженность сетки определяется содержанием в составе стекла диоксида кремния. Апериодическую сетку, образующуюся путем сочленения координационных полиэдров вершинами, можно рассматривать как анион сложного состава. Компоненты стекла, способные самостоятельно образовывать структурную непрерывную сетку, такие, как SiO2, и другие, принадлежат к группе стеклообразователей. Компоненты стекла, не способные самостоятельно образовывать структурную непрерывную сетку, называются модификаторами. К группе модификаторов, как правило, принадлежат оксиды элементов первой и второй групп периодической системы, а также некоторых элементов других групп.
Катионы модификаторов располагаются в свободных полостях структурной сетки, компенсируя избыточный отрицательный заряд сложного аниона. Кислородное окружение катионов модификаторов формируется в соответствии с их координационными требованиями. Прочность связи модификатор — кислород значительно ниже прочности связи стеклообразователь — кислород, поэтому модификаторы не образуют прочных координационных групп.
Координационное число катиона модификатора в стекле представляет собой некоторое среднестатистическое число атомов кислорода, приходящееся на один атом модификатора. В отличие от геометрически правильных группировок координационных полиэдров стеклообразователей координационные группировки модификаторов могут не иметь геометрически правильной фигуры.
В структуре
стекла различают два возможных
состояния атомов кислорода: атомы,
соединяющие соседние полиэдры, называют
мостиковыми, а соединяющие катионы
модификаторов со сложным анионом,
называют немостиковыми.
2.1.1 Кварцевое стекло
Структурной основной единицей кварцевого стекла является кремнекислородный тетраэдр. Атом кремния окружен четырьмя атомами кислорода, расположенными симметрично в вершинах тетраэдра.
Структура кварцевого стекла выполнена из тетраэдров SiО4, соединенных друг с другом вершинами через атомы кислорода. В результате образуется непрерывный пространственный каркас, отличающийся от геометрически правильных решеток кристаллических модификаций кварца отсутствием дальнего порядка в расположении и ориентации тетраэдров. Тетраэдры SiО4 не образуют в пространстве геометрически правильных сочленений в виде шести членных колец, характерных для структуры высокотемпературного кристобалита.
Структурная сетка стекла выглядит как искаженная кристаллическая решетка. Искажение заключается в произвольном варьировании значений угла связи Si—О—Si между соседними тетраэдрами в структуре стекла.
Группировка [SiО4]4- имеет избыточный отрицательный заряд (-4), но каркасная сетка из тетраэдров SiО4 в целом электронейтральна, так как каждый атом кислорода связан с двумя атомами кремния. В структуре кварцевого стекла все атомы кислорода мостиковые.
Структуры
кристаллических и
Именно благодаря наличию в структуре свободных полостей, кварцевое стекло обладает наиболее высокой газопроницаемостью (гелий, водород, неон) по сравнению с другими силикатными стеклами, в составе которых кроме диоксида кремния присутствуют оксиды щелочных и щелочноземельных металлов.
В том месте, где выстроились ионы щелочного металла, отсутствует химическая связь между элементами структуры (место разрыва на схеме обозначено пунктирным овалом). Ионы щелочных металлов являются модификаторами. По мере увеличения концентрации Me2О в составе стекла растет число разрывов в структурной сетке и число не мостиковых атомов кислорода, приходящихся на один тетраэдр SiО4. При концентрациях Ме2О более 60 мол. в % создаются условия для образования изолированных тетраэдров SiО4. Кристаллизуются подобные расплавы чрезвычайно быстро, так как облегчаются условия переориентации структурных единиц, в то время как застывание расплава в виде стекла при этом затруднено.
Области
стеклообразования в бинарных щелочно-силикатных
системах непрерывны. В системе с
Li2O содержание предельных концентраций
SiO2 составляет 100—64 мол.%, с Na2О
100—48 мол.%, с К2О 100-46 мол. %, с TI2O
50—33 мол. %.
2.1.3 Фосфатные стекла
Фосфатные
стекла построены из тетраэдров [PО4]3
. Один из атомов кислорода тетраэдра не
может участвовать в образовании связи
с другими компонентами структуры из-за
наличия двойной связи фосфор — кислород.
В структуре фосфатных стекол мостиковыми
могут быть только три атома кислорода
фосфор кислородного тетраэдра.
Рис. 2.1. Область стеклообразования и область ликвации в системе Na2O—B2O5— SiO2
А—область ликвации; Б—линия, по которой наиболее полно проявляется борная аномалия;
В—граница стеклообразования; М—граница опалесцирующих стекол по О. С. Молчановой;
/ — стекло пирекс; 2 — стекло викор
Рис. 2.2. Схемы кристаллитного строения кварцевого (а) и натриево-силикатного (б) стекол (по Порай-Кошицу)
1—кристаллы кварца; 2—кристаллы силиката натрия; 3—ионы натрия; 4—тетраэдры Si0.
По данным рентгеноструктурного анализа расстояние Р—О в стеклах равно 0,157 нм, угол Р—О—Р—1400.
В этом отношении структура Р203 отличается от структур других стеклообразователей, у которых все атомы кислорода мостиковые. Пространственная структура фосфатных стекол может состоять из колец различного размера, образованных чередующимися атомами фосфора и кислорода, лент или цепочек из тетраэдров РО4.
Результаты
рентгеноструктурного анализа показывают,
что структура двойных фосфатных стекол
подобна структуре двойных силикатных
стекол по следующим двум параметрам:
структурной основной единицей являются
тетраэдрические элементокислородные
группировки; с добавлением модифицирующих
оксидов растет число не мостиковых атомов
кислорода.
2.2 Микронеоднородное строение стекол.
Согласно современным представлениям, все однофазные стекла имеют микронеоднородное строение. Речь идет об образовании в структуре микрообластей размером от 1 до 20 нм, отличающихся химическим составом или геометрическим упорядочением в расположении частиц. Прямые доказательства микронеоднородного строения стекол были получены методами рентгеноструктурного, электронномикроскопичес-кого, спектрального анализов.