Строение из стекла

Автор: Пользователь скрыл имя, 18 Декабря 2011 в 16:31, реферат

Описание работы

Вещества в твердом состоянии при обычной температуре и давлении могут иметь кристаллическое или аморфное строение. В природе наиболее распространены кристаллические твердые вещества, для структуры которых характерен геометрически строгий порядок расположения частиц (атомов, ионов) в трехмерном пространстве. Кристаллическое состояние является стабильным при обычных условиях и характеризуется наиболее низкой внутренней энергией. Твердые кристаллические вещества имеют четкие геометрические формы, определенные температуры плавления, в большинстве случаев проявляют анизотропию, т.е. их физические свойства (показатель преломления, теплопроводность, скорости растворения и роста кристаллов и др.) неодинаковы при измерении в различных направлениях.

Работа содержит 1 файл

стёкла.doc

— 237.50 Кб (Скачать)

  Микрообласти  не имеют поверхностей раздела фаз. Они являются неотъемлемой частью структуры  сложного однофазного стеклообразного силиката, но концентрация модифицирующих компонентов в них выше или ниже средней статистической.

  Идея  о микронеоднородном строении стекол была заложена в гипотезе А. А. Лебедева и получила развитие в работах Е. А. Порай-Коши-ца, К. С. Евстропьева,  Н. В. Гребенщикова,  О. С. Молчановой, С. П. Жданова. На рис. 2.2 представлена схема образования геометрически и химически упорядоченных областей («кристаллитов» по А. А. Лебедеву) в стеклах. Четко видно равномерное распределение этих областей в микрообъеме, отсутствие границ раздела фаз, постепенный переход от геометрически упорядоченного строения микрообласти к полностью неупорядоченному строению каркаса из тетраэдров SiО4.

  Щелочно-боросиликатные стекла являются одним из примеров того, что при микронеоднородном строении может наступить фазовое разделение, сопровождающееся образованием границ раздела фаз. При выщелачивании стекол в области составов, отмеченных на рис. 2.1, растворами соляной, уксусной и других кислот образуется высокопористый кремнеземистый каркас (95—96 % SiO2), сохраняющий исходную форму, размеры и прочность (кварцоидные стекла, викор). Средний диаметр пор, в которых располагается натриево-боратная фаза, составляет 2—6 нм. 
 

3. Свойства стекол.

Все типы стекол, независимо от их химического  состава и температурной области затвердевания, обладают специфическими свойствами, которые отличают их от кристаллов и жидкостей.

Стекла рентгеноаморфны вследствие неупорядоченного атомного строения. В структуре стекла отсутствует дальний порядок, т. е. систематическая повторяемость элементарных объемов структуры, характерная для кристаллических веществ.

Если  ориентировочно определить межплоскостное расстояние, соответствующее максимуму аморфного гало, то оно оказывается близким основному дифракционному максимуму кристобалита—0,415 нм. Однако в структуре стекла частицы находятся не на строго определенных расстояниях, как в кристобалите или других кристаллических модификациях кварца, а на расстояниях больших и меньших относительно некоторого среднестатистического значения.

 Стекла изотропны, если они однородны по составу, свободны от напряжений и дефектов. Изотропия свойств стекол, как и других аморфных сред, обусловлена отсутствием направленной в пространстве ориентации частиц. Оптическая анизотропия может возникнуть в стекле в результате действия растягивающих или сжимающих напряжений (явления оптической анизотропии).

 Температурный интервал стеклования. Стекла не имеют определенной температуры затвердевания или плавления. Оба эти процесса происходят постепенно в некотором температурном интервале. При охлаждении расплав переходит из жидкого в пластическое состояние, и только затем—в твердое (процесс стеклования). Наоборот, при нагревании стекло переходит из твердого в пластическое состояние, при более высоких температурах—в жидкое (размягчение стекла).

Температурный интервал, в котором происходит процесс  стеклования или обратный ему  процесс размягчения, называется интервалом стеклования и ограничен двумя температурами: со стороны высоких температур Тf, со стороны низких температур Tg (температура стеклования) (рис. 3.1).

 При температуре Tg стекло обладает свойствами твердого упругого тела с хрупким разрушением. Температура Tf является границей пластического и жидкого состояний. При температуре Тf из стекломассы уже удается вытягивать тонкие нити.

 Понятия о Tg и Tf были введены Тамманом. Подстрочные индексы «g» и «f» являются первыми буквами слов «Glass» — стекло и «Flissigkeit» — жидкость.

                                                                                       

Рис. 3.1. Зависимость свойства Р и его производных  в интервале стеклования (по Тамману)

/— твердое  состояние; // — пластическое; III — жидкое (расплав)

                                               

      Рис. 3.2. Влияние условий  переохлаждения на мольный объем      вещества в расплавленном, кристаллическом и стеклообразном состояниях.

Процессы  размягчения стекла или затвердевания  стекломассы являются однофазными в отличие от плавления кристаллических веществ или кристаллизации расплавов. При размягчении стекла в интервале стеклования отсутствует жидкая фаза.

Свойства  стекол по характеру изменения в  интервале стеклования делят  на три группы. К первой группе относятся  свойства Р, характеризующие функцию состояния веществ (внутренняя энергия Е, мольный объем V, энтальпия Н, энтропия S) и кинетические свойства (вязкость), удельное сопротивление r). Свойства первой группы с повышением температуры изменяются постепенно. В интервале стеклования кривая имеет закругленный перегиб (рис. 3.1, кривая 1), соответствующий наиболее резкому изменению свойств первой группы. Свойства второй группы представляют собой первую производную по температуре dP/dT от свойств первой группы (коэффициенты термического расширения—линейный и объемный, теплоемкость). Кривая 2 характеризует температурный ход зависимости свойств второй группы. Можно видеть, что в интервале стеклования первая производная dP/dT имеет точку перегиба Tg. Третья группа включает свойства (теплопроводность, диэлектрические потери), которые являются вторыми производными по температуре от функций состояния (кривая 3). Температурная зависимость d2P/dT2 имеет максимум или минимум в точке Tw.

Характер  изменения свойств стекол при  нагревании резко отличается от температурной  зависимости свойств кристаллических веществ. Для последних нет деления свойств на группы, характер температурных кривых однотипен: незначительное линейное изменение свойств до температуры плавления, резкое скачкообразное изменение свойств при температуре плавления. Температуры Tg, Tw, Tf лежат всегда ниже температуры плавления соответствующего кристалла.

Значения  температур Tg, Tf, а также интервал стеклования (Tg—Tf) зависят от состава стекла.

Температуры Tg и Tf принадлежат к числу характеристических точек на температурной кривой вязкости. Температуре стеклования Tg соответствует вязкость стекломассы, равная 10123 Па-с, а температуре Tf—вязкость 108 Па-с.

Из (рис. 3.2) можно видеть, что объем стекла в отличие от объема кристаллического вещества не является константой для данного состава. Он зависит от температурно-временных условий получения стекла.

Изотермическая  выдержка закаленного стекла при  температуре (T<Tg) будет сопровождаться уменьшением объема по прямой в связи со стремлением структуры достичь равновесного состояния при температуре Т (см. рис. 3.2). Время структурных перестроек в области низких температур исключительно велико

Неравновесное состояние структуры стекла находит  свое выражение в явлениях термического последействия (так называемое, «вековое повышение точки нуля» и «депрессия точки нуля»), широко известных при эксплуатации точных стеклянных шкал и термометров.

4. Классификация стекол по составу

  Согласно  определению Комиссии по терминологии АН СССР (1932г.) «стеклом называются все  аморфные тела, получаемые путем переохлаждения расплава независимо от их состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым».

  Из  определения следует, что в стеклообразном состоянии могут находиться вещества, принадлежащие к разным классам химических соединений.

  Органические  стекла представляют собой органические полимеры-полиакрилаты, поликарбонаты, полистирол, сополимеры винилхлорида с метилметакрилатом, — находящиеся в стеклообразном состоянии. Наибольшее практическое применение нашли стекла на основе полиметил-метакрилата. По своей технологии, механизму твердения и строению органические стекла существенно отличаются от неорганических и составляют особый объект изучения.

  Многовековая  история стеклоделия связана  с изготовлением силикатных стекол, основывающихся на системе Na2O—СаО—SiO2. Только во второй половине XX в. было показано, что натрий-кальций-силикатные стекла составляют небольшую часть безграничного мира неорганических стекол.

  По  типу неорганических соединений различают  следующие классы стекол: элементарные, галогенидные, халькогенидные, оксидные, металлические, сульфатные, нитратные, карбонатные и др. 

  Элементарные  стекла способны образовывать лишь небольшое число элементов — сера, селен, мышьяк, фосфор, углерод. Положение стеклообразующих  элементов в периодической системе показано на рис. 4.1.

  Стеклообразные - серу и селен, удается получить при быстром переохлаждении расплава; мышьяк — методом сублимации в вакууме; фосфор—при нагревании до 250°С под давлением более 100 МПа; углерод—в результате длительного пиролиза органических смол. Промышленное значение находит стеклоуглерод, обладающий уникальными свойствами, превосходящими свойства кристаллических модификации углерода: он способен оставаться в твердом состоянии вплоть до 3700°С, имеет низкую плотность порядка 1500 кг/м3, обладает высокой механической прочностью, электропроводностью, химически устойчив. 

Галогенидные стекла получают на основе стеклообразующего компонента BeF2. Многокомпонентные составы фторбериллатных стекол содержат также фториды алюминия, кальция, магния, стронция, бария. Фторбериллатные стекла находят практическое применение благодаря высокой устойчивости к действию жестких излучений, включая рентгеновские лучи, и таких агрессивных сред, как фтор и фтористый водород. 

Халькогенидные  стекла получают в бескислородных системах типа As—J (где Z—S, Se, Te), Ge—As—X, Ge—Sb—X, Qe—P—X и др. Халькогенидные стекла имеют высокую прозрачность в ИК-области спектра, обладают электронной проводимостью, обнаруживают внутренний фотоэффект. Стекла применяются в телевизионных высокочувствительных камерах, в электронно-вычислительных машинах в качестве переключателей или элементов запоминающих устройств. 

Оксидные стекла представляют собой обширный класс соединении. Наиболее легко образуют стекла оксиды SiO2, GeO2, ВгО3, P2O5.

Большая группа оксидов — TeO2, TiО2, SeО2, WO2, BiO5, 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Рис. 4.1.   Область  стеклообразования  в системе Na2O—CaO— SiО2 (а) и диаграмма состояния части тройной системы (по Морею) (б), имеющая  значение для технологии стекла

1-граница  области стеклообразования;  2 - область составов промышленных стекол; 3 - составы  древних стекол (Египет, Ближний Восток);    Э - эвтектика; Д – состав девитрита Na2О-3Ca0; Р-состав     растворимого стекла Na2O-2,25SiО2

Например, легко образуются стекла в системах CaO—Al2O5, СаО—МgО3—ВаО3, P5O5—Ws.

Каждый из стеклообразующих оксидов может образовать стекла в комбинации с промежуточными или модифицирующими оксидами. Стекла получают названия по виду стеклообразующего оксида: силикатные, боратные, фосфатные, германатные и т.д. Практическое значение имеют стекла простых и сложных составов, принадлежащие к силикатным, боратным, боросиликатным, фосфатным, германатным, алюминатным, молибдатным, вольфраматным и другим системам.

Промышленные  составы стекол содержат, как правило, не менее 5 компонентов, а специальные и оптические стекла могут содержать более 10 компонентов.

Важнейшее достоинство стекольной технологии состоит в том, что она позволяет  получать в твердом состоянии  вещества с нестехиометрическим  соотношением компонентов, которые  не существуют в кристаллическом состоянии. Более того, свойства стекол удается плавно регулировать в нужном направлении путем постепенного изменения состава.

Стекла, полученные на основе нитратных, сульфатных и карбонатных соединений, в настоящее время представляют научный интерес, но практического применения пока не имеют. 

  Традиционная  технология получения стекол включает переохлаждение расплава до твердого состояния без кристаллизации. На этом способе основана мировая промышленная технология производства стекла.

  Создание  технических устройств, позволяющих отводить тепло с более высокой скоростью, расширяет число веществ, которые удается получить в стеклообразном состоянии путем охлаждения расплава. Сверхвысокие скорости переохлаждения порядка нескольких миллионов градусов в 1 с позволяют фиксировать в стеклообразном состоянии сплавы металлов (например, в системе Fe—Mi—В—Р).

Информация о работе Строение из стекла