Основные законы химии

Автор: Пользователь скрыл имя, 16 Января 2013 в 16:16, реферат

Описание работы

Атом каждого элемента состоит из ядра, масса которого складывается из определенного количества протонов и нейтронов, и вращающихся вокруг него электронов, число которых равно числу протонов, т.е. заряду ядра. Заряд ядра равен порядковому номеру элемента в Периодической системе Д.И. Менделеева и является величиной, определяющей химические свойства элемента. Например, порядковый номер цинка – 30,

Работа содержит 1 файл

osnov_zakon_oh.doc

— 286.00 Кб (Скачать)

ОСНОВНЫЕ ЗАКОНЫ И ПОНЯТИЯ ХИМИИ

 

Все законы химии базируются на атомно-молекулярном учении, в связи с чем основополагающими  понятиями в химии являются понятия атома и молекулы.

 

Атомом называется мельчайшая частица химического  элемента, сохраняющая его химические свойства.

Атом каждого элемента состоит  из ядра, масса которого складывается из определенного количества протонов и нейтронов, и вращающихся вокруг него электронов, число которых равно числу протонов, т.е. заряду ядра. Заряд ядра равен порядковому номеру элемента в Периодической системе Д.И. Менделеева и является величиной, определяющей химические свойства элемента. Например, порядковый номер цинка – 30, это означает, что ядро его атома содержит 30 протонов, заряд ядра равен +30, число электронов в атоме цинка – тридцать. Атомы, обладающие одинаковым зарядом ядра (и, следовательно, тождественными химическими свойствами), но разным числом нейтронов, называются изотопами.

Элементом называется вид атомов, характеризующихся определенной величиной положительного заряда ядра.

Все открытые на Земле элементы систематизированы  в таблице Д.И. Менделеева. Они  подразделяются на металлы и неметаллы. Каждый элемент имеет свое название и символ (например, Na – натрий, Р – фосфор).

Все вещества делятся на простые и  сложные. Для большинства из них мельчайшей частицей является молекула, которая состоит из атомов, число которых и взаимное расположение в молекуле определяют свойства вещества.

Молекула – это  наименьшая частица вещества, обладающая его химическими свойствами.

Молекулы могут состоять из атомов одного или нескольких элементов.

Простое вещество –  это вещество, состоящее из атомов одного элемента.

Мельчайшей частицей, сохраняющей  свойства простого вещества, может быть атом, а может быть молекула. Например, простое вещество железо состоит из атомов элемента железа, а простое вещество – из двухатомных молекул, образованных атомами одного элемента - кислорода.

Атомы одного и того же элемента могут  образовывать несколько простых веществ, различных по своим свойствам. Это явление называется аллотропией, а вещества – аллотропическими модификациями. Аллотропические модификации отличаются друг от друга либо различным числом атомов в молекуле, например, кислород О2 и озон О3, либо разной кристаллической структурой, например, углерод, алмаз и карбин, химический знак которых – С.

Сложное вещество, или  соединение, - это вещество, состоящее  из атомов разных элементов.

Вид и число атомов в молекуле вещества изображаются химической формулой. Например, формула серной кислоты – H2SO4. Это означает, что молекула этого вещества состоит из одного атома серы, двух атомов водорода и четырех атомов кислорода. Соотношение между числом атомов разных элементов в молекуле определяется валентностью этих элементов.

Валентность элемента – это способность его атомов соединяться с другими атомами в определенных соотношениях.

Валентность – сложное понятие, его современное значение будет выяснено при изучении теории строения вещества.

Наряду  с валентностью употребляется понятие  степень окисления.

Степень окисления – это условный заряд атома данного элемента в соединении, вычисленный, исходя из предположения, что все атомы в молекуле ионизированы, т.е. имеют заряд.

Степень окисления может иметь  положительное, отрицательное и нулевое значения, которые обычно ставятся над символом элемента сверху. Например, , . Степень окисления элементов в простых веществах равна нулю Степень окисления некоторых элементов в их соединениях имеет постоянное значение. К таким элементам относятся щелочные металлы (степень окисления +1), металлы II А подгруппы Периодической системы (+2), а также серебро , цинк , кадмий , алюминий . Водород проявляет степень окисления +1 во всех соединениях, кроме гидридов, в которых степень окисления водорода равна –1 . Степень окисления кислорода практически постоянна и составляет –2.

Большинство элементов имеет переменную степень окисления, например, .

Массы атомов и молекул очень  малы (10-25-10-20) и пользоваться ими при расчетах неудобно. Поэтому в химии введены относительные величины масс атомов и молекул, которые называются атомными или соответственно молекулярными массами. В качестве единицы измерения принята атомная единица массы (сокращенно а.е.м.), равная 1/12 массы атома изотопа углерода 12С.

Относительной атомной  массой (или атомной массой) элемента называется масса его атома, выраженная в атомных единицах массы.

Атомные массы элементов определяются из таблицы Д.И. Менделеева, причем их значения принято округлять до целого числа. Исключение составляет масса хлора, равная 35,5.

Относительной молекулярной массой (или молекулярной массой) простого или сложного вещества называется масса его молекулы, выраженная в атомных единицах массы.

Атомные и молекулярные массы обычно приводятся без обозначения единицы  измерения.

Важнейшей количественной единицей в  химии является величина, называемая молем.

Моль – это количество вещества, содержащее столько молекул, атомов, ионов или других структурных  единиц, сколько содержится атомов в 12 г изотопа углерода 12С.

В одном моле любого вещества содержится 6,02×1023 структурных единиц. Число 6,02×1023 называется числом  Авогадро.                                                                                                            ¥

Применяя  понятие «моль», необходимо в каждом конкретном случае указывать, какие именно структурные единицы имеются в виду. Например, следует различать моль атомов Н, моль молекул Н2, моль ионов Н+. В моле атомов, молекул, ионов водорода содержится атомов, молекул, ионов водорода соответственно.

Масса 1 моль вещества называется молярной (или мольной) массой и выражается в г/моль.

Численно масса 1 моль любых структурных единиц равна  массе этой структурной единицы, выраженной в а.е.м.

Одним из важнейших законов химии  является закон постоянства состава.

Всякое химически  чистое индивидуальное вещество, независимо от способа его получения, имеет постоянный качественный и количественный состав.

Исходя из представлений атомно-молекулярной теории это означает, что каждое химически чистое вещество состоит  из одинаковых молекул, в состав которых входят атомы определенных элементов. При этом соотношение между числом атомов каждого элемента и, следовательно, соотношение между их массами определяются молекулярной формулой вещества и остаются постоянными независимо от количества вещества и способа его получения.

Вещества  способны вступать между собой в  химические реакции.

Процессы, при которых  одни вещества превращаются в другие, отличающиеся от исходных своим составом и свойствами, называются химическими.

В основе химических процессов (реакций) лежит закон сохранения массы вещества.

Масса веществ, вступающих в химическую реакцию, равна массе  веществ, образующихся в результате реакции.

Этот закон является частным  случаем основополагающего закона природы – закона сохранения материи.

Закон сохранения массы вещества в химии выражается в составлении уравнения реакции, которое показывает, какие вещества и в каком количественном соотношении участвуют в данном процессе.

Химическое  уравнение состоит из двух частей, соединенных знаком равенства. В левой части записываются формулы веществ, вступающих в реакцию, а в правой – формулы веществ, образующихся в результате реакции, согласно закону сохранения массы вещества. Число атомов каждого элемента в левой и правой частях уравнения должно быть одинаковым. Для этого в случае необходимости подбирают и расставляют перед формулами исходных и конечных веществ коэффициенты, которые называются стехиометрическими коэффициентами.

Так, уравнение взаимодействия гидроксида алюминия с серной кислотой

после подбора коэффициентов  будет выглядеть следующим образом:

                                     (1)

Коэффициенты в обеих частях уравнения химической реакции можно увеличивать или уменьшать в одинаковое число раз. Так, уравнение (1) можно записать следующим образом:

Примем n равным: а)2; б)1/2. Тогда уравнение (1) будет иметь вид

а) 

             (2)

б)

          (3)

Все записанные уравнения удовлетворяют  закону сохранения массы вещества.

Обычно расставляют минимальные  целочисленные коэффициенты, причем коэффициент 1 опускается. В рассмотренном примере таким уравнением является уравнение (1). Уравнение реакции считается составленным только тогда, когда подобраны коэффициенты. Если при подборе коэффициентов не удается уравнять количество атомов в обеих частях уравнения, то это означает, что вещества, участвующие в реакции, написаны неправильно.

Химические уравнения можно  складывать и вычитать как обычные  алгебраические уравнения, если продукты одной реакции являются исходными веществами для другой. В этом случае расставляются удобные для сложения или вычитания коэффициенты.

Так, чтобы составить суммарное  уравнение получения фосфорной кислоты из фосфора, кислорода и воды, надо составить два уравнения:

                                            а)

                                      б)

Чтобы исключить промежуточное  вещество , надо удвоить коэффициенты в уравнении б) и сложить оба уравнения

                                    +

                             ______________________

 

Если в реакции участвуют  газообразные вещества, то на основании уравнения реакции можно определить не только массы реагирующих газов, но их объемы. Объем газа зависит от его количества, давления и температуры.

Количественные расчеты объемов  газообразных веществ, участвующих в химической реакции, базируются на законе Авогадро.

В равных объемах любых  газов, взятых при одинаковой температуре и давлении, содержится одно и то же число молекул.

В соответствии с законом Авогадро одинаковое число молекул газа занимает при одних и тех же условиях одинаковый объем. С другой стороны, 1 моль любого вещества содержит (по определению) одинаковое число частиц. Отсюда следует важный вывод (следствие из закона Авогадро):

При определенных температуре  и давлении 1 моль любого вещества в  газообразном состоянии занимает один и тот же объем.

Поскольку объем данной массы газа зависит от давления и температуры, то при расчетах по химическим реакциям с участием газообразных веществ необходимо указывать условия, при которых находится газ. Наиболее употребительными являются так называемые «нормальные» условия (н.у.). К нормальным условиям относятся: температура 00С (273К) и давление, равное

Объем 1 моль любого газообразного  вещества при нормальных условиях (н.у.) равен 22,4л.

Этот объем называется молярным или мольным объемом газа при нормальных условиях.

Вещества, способные  распадаться в растворе или в  расплаве на заряженные частицы (ионы), называются электролитами.

Положительно заряженные ионы называются катионами, а отрицательно заряженные – анионами.

Катионами являются ионы водорода, Н+, ион аммония, NН+4, ионы металлов, например, Na+, Ca2+, Al3+. К анионам относятся гидроксид-ион, ОН-, ионы кислотных остатков, например, Cl- , NO3-, SO42-.

Свойства ионов резко отличаются от свойств атомов соответствующих элементов. Так, натрий и калий разлагают воду с выделением водорода, а ионы Na+ и K+такими свойствами не обладают.

Процесс распада молекул  электролитов на ионы называется электролитической диссоциацией.

Электролитическая диссоциация является обратимым процессом, т.е. в растворе или расплаве одновременно протекают две реакции: распад молекул на катионы и анионы (КА® К++ А-) и ассоциация (соединение) ионов в молекулы (К+ + А- ® КА). Поэтому уравнение реакции электролитической диссоциации записывается следующим образом: КАÛК+-; знак Û указывает на обратимость процесса.

Поскольку электролитическая диссоциация  – процесс обратимый, то в растворах электролитов одновременно присутствуют не только ионы, но и молекулы, не распавшиеся на ионы. Способность молекул данного электролита диссоциировать в растворе или расплаве характеризуется степенью диссоциации a.

Степенью диссоциации  называется отношение числа молекул (молей) электролита, распавшихся на ионы, к общему числу его молекул (молей). Степень диссоциации выражается либо в долях единицы, либо в процентах.

Все электролиты подразделяются на сильные и слабые. Сильные электролиты  диссоциируют практически нацело, степень  их диссоциации близка к единице (100%). В растворах сильных электролитов содержатся преимущественно ионы, недиссоциированных молекул практически нет.

Слабые  электролиты характеризуются малой  степенью диссоциации, поэтому в  растворе присутствует значительное количество непродиссоциированных молекул.

К электролитам относятся кислоты, основания и соли.

Кислотами называются электролиты, при диссоциации которых  в качестве катионов образуются только ионы водорода. Образовавшийся при диссоциации кислоты анион называется кислотным остатком.

Так, при диссоциации азотной  кислоты (HNO3) образуются ион водорода Н+ и анион NO3- (нитрат-ион)

HNO3Û Н++ NO3-.

Информация о работе Основные законы химии