Автор: Пользователь скрыл имя, 21 Ноября 2012 в 12:56, курсовая работа
Настоящий стандарт устанавливает методы определения кальция и магния в водной вытяжке из засоленных почв при проведении почвенного, агрохимического, мелиоративного обследования угодий, контроля за состоянием солевого режима почв, а также при других изыскательских и исследовательских работах.
Суммарная относительная погрешность, выраженная коэффициентом вариации, составляет;
для комплексонометрического метода
12,5 % - для количества эквивалентов кальция и магния св. 0,5 до 2 ммоль в 100 ,г почвы; 10 % - св. 2 до 6 ммоль в 100 г почвы; 5 % - св. 6 ммоль в 100 г почвы;
для атомно-абсорбционного метода
12,5 % - для количества эквивалентов кальция св. 0,5 до 2 ммоль в 100 г почвы; 10 % - св. 2 до 6 ммоль в 100 г почвы; 6 % - св. 6 ммоль в 100 г почвы;
10 % - для количества эквивалентов магния св. 0,3 до 2 ммоль в 100 г почвы; 8 % - св. 2 ммоль в 100 г почвы.
1. ОПРЕДЕЛЕНИЕ КАЛЬЦИЯ И МАГНИЯ КОМПЛЕКСОНОМЕТРИЧЕСКИМ МЕТОДОМ
1.1. Метод отбора проб
1.2. Аппаратура, материалы и реактивы
1.3. Подготовка к анализу
1.3.1. Приготовление хлоридно-аммиачного буферного раствора
1.3.2. Приготовление раствора индикатора
1.3.3. Приготовление раствора сернокислого магния концентрации моль/дм3 (0,1 н.)
1.3.4. Приготовление раствора трилона Б концентрации моль/дм3 (0,05 н.)
1.4. Проведение анализа
1.4.1. Приготовление вытяжки из почвы
1.4.2. Определение кальция и магния
1.5. Обработка результатов
2. ОПРЕДЕЛЕНИЕ КАЛЬЦИЯ И МАГНИЯ АТОМНО-АБСОРБЦИОННЫМ МЕТОДОМ
2.1. Метод отбора проб
2.2. Аппаратура, материалы и реактивы
2.3. Подготовка к анализу
2.3.1. Приготовление раствора хлористого кальция концентрации моль/дм3 (0,05 н.)
2.3.2. Приготовление раствора хлористого магния концентрации моль/дм3 (0,025 н.)
2.3.3. Приготовление запасного раствора хлористого стронция
2.3.4. Приготовление рабочего раствора хлористого стронция
2.3.5. Приготовление растворов сравнения для определения кальция и магния
2.4. Проведение анализа
2.4.1. Приготовление вытяжки из почвы
2.4.2. Проведение анализа с использованием газовой смеси состава ацетилен - воздух
2.4.3. Проведение анализа с использованием газовой смеси состава пропан - бутан - воздух
2.5. Обработка результатов
4.1.4 Для проведения анализа применяют мерную лабораторную посуду не ниже 2-го класса точности по ГОСТ 29228, ГОСТ 29230 и ГОСТ 29252 (бюретки, пипетки) и ГОСТ 1770 (цилиндры, мензурки, колбы), а также стеклянную посуду (стаканы, колбы конические, воронки конические, эксикаторы и др.) по ГОСТ 25336, фарфоровую посуду и оборудование (тигли, лодочки, вставки для эксикаторов и др.) по ГОСТ 9147, тигли и чашки из платины по ГОСТ 6563, беззольные фильтры по соответствующей нормативной и технической документации.
Допускается применение аналогичной импортной посуды и материалов.
4.1.5 Для приготовления растворов и проведения анализов применяют реактивы не ниже класса ч.д.а., если не указана иная классификация, и дистиллированную воду, которая должна соответствовать ГОСТ 6709.
Горячая вода или горячий раствор, применяемые при химическом анализе, должны иметь температуру 60—80 °С, теплая вода или теплый раствор — 40—50 °С.
4.1.6 Для прокаливания и сплавления навесок анализируемых проб с плавнями применяют муфельные лабораторные электропечи или печи аналогичного типа с температурой нагрева (1000±50) °С.
Для сушки материалов используют
сушильные шкафы с
Для проведения анализов используют электрические плитки с закрытой спиралью, песчаные и водяные бани, термометры, магнитные мешалки, титраторы, фотоэлектротитриметры, иономеры, рН-метры, пламенные фотометры, концентрационные фотоэлектроколориметры, спектрофотометры.
Применяемые средства анализа
должны соответствовать требованиям
нормативной и технической
4.1.7 Применяемые
4.1.8 Концентрацию растворов выражают:
— в процентах по массе, численно равной массе растворенного вещества в граммах в 100 г раствора;
— массой растворенного вещества в граммах в 1 л раствора, г/л;
— массой растворенного вещества (или эквивалентного ему количества определяемого вещества) в граммах в 1 мл раствора, г/мл;
— в молях растворенного вещества в 1 л раствора (молярная концентрация М);
— в грамм-эквивалентах растворенного вещества в 1 л раствора (нормальная концентрация Н);
— соотношением объемных частей, например, 1:2, где первое число означает объемные части концентрированной кислоты или иного реактива, а второе — объемные части воды (если не указан другой растворитель).
Если в методике проведения
анализа не указана концентрация
или разбавление кислоты или
водного раствора аммиака, то это
концентрированная кислота или
концентрированный раствор
4.1.9 Массовую концентрацию
стандартных растворов, а
4.1.10 Допускается последовательное определение нескольких элементов из одной навески, переведенной в раствор.
4.1.11 Для контроля погрешности результатов анализа используют изготовленные и аттестованные в соответствии с ГОСТ 8.315 и ГОСТ 8.532 стандартные образцы состава веществ и материалов: государственные и отраслевые стандартные образцы (ГСО и ОСО), стандартные образцы предприятия (СОП). При этом результат анализа стандартного образца считают удовлетворительным, если среднеарифметическое двух параллельных определений отличается от аттестованного значения массовой доли определяемого элемента не более чем на 0,7 ошибки повторяемости, установленной в стандарте для соответствующего элемента.
При отсутствии стандартных образцов контроль осуществляют по стандартным растворам.
4.1.12 Массовую долю элементов
в анализируемой пробе
4.1.13 В качестве норм точности (метрологических характеристик) определения содержания элемента используют расхождение между параллельными определениями.
Максимальные абсолютные
расхождения результатов
Средний результат анализа стандартного образца не должен отличаться от массовой доли определяемого элемента более чем на половину величины абсолютного допустимого расхождения для соответствующего интервала концентраций.
В случае, если соответствующими нормативными документами установлено предельное значение для определяемого элемента, а полученный результат анализа отличается от этого предельного значения более чем на величину допустимой ошибки повторяемости, следует произвести повторный анализ не менее трех навесок.
За окончательный результат принимают среднеарифметическое значение этих определений.
Если предельное значение
установлено для суммы
4.1.14 Расхождение результатов
определений в двух
Если расхождения между результатами параллельных испытаний пробы или стандартного образца, проводимых в лаборатории, превышают допускаемые величины, проводят повторные испытания.
Если при повторных испытаниях хотя бы одно из указанных расхождений превысит допустимую величину, результаты анализа признают неверными, испытания прекращают до выявления и устранения причин, вызвавших нарушения нормального хода анализа.
4.1.15 При применении физико-химических методов анализа, например фотоэлектроколориметрического, требующих построения градуировочных графиков, графики строят в прямоугольных координатах. На оси абсцисс откладывают величину массы определяемого элемента, г, мг, или массовую долю, %, на оси ординат — соответствующий аналитический сигнал (величину оптической плотности, силу тока и др.).
Для построения графиков используют ГСО, ОСО, состав которых близок к составу исследуемого материала, или реактивы, из которых готовят градуировочные растворы.
Условия построения графиков
указаны в соответствующих
График строят не менее чем по пяти точкам, которые равномерно распределяют по диапазону измерений.
Минимальную и максимальную
навески рассчитывают таким образом,
чтобы обеспечить весь необходимый
диапазон измерений. Каждую точку находят
как среднеарифметическое значение
не менее трех параллельных определений.
Не допускается строить
При использовании аликвотных частей массовую долю элемента (оксида) x0, %, определяют по формуле
, (2)
где т1 — масса элемента (оксида) в аликвотной части раствора, определенная по градуировочному графику, мг;
V — общий объем исходного раствора, мл;
т — масса навески, мг;
v1 — аликвотная часть исходного раствора, мл.
4.1.16 При выполнении анализа навеску анализируемой пробы, разведение и аликвотные части необходимо принимать такими же, как при изготовлении основного градуировочного раствора.
В случае необходимости изменения
навески, разведения или аликвотной
части по сравнению с условиями
приготовления основного
4.1.17 При фотоколориметрическом анализе вводят поправку на изменение условий фотометрирования по сравнению с условиями градуировки. Для этого одновременно с анализируемым образцом измеряют оптическую плотность вновь приготовленного окрашенного градуировочного раствора.
Измерение оптической плотности раствора выполняют с погрешностью не более ±0,002. Поправку вносят с обратным знаком:
если оптическая плотность градуировочного раствора увеличилась на несколько единиц, то это значение отнимают от величины оптической плотности анализируемого раствора, и наоборот. После введения поправки находят по графику искомую массовую долю элемента.
4.1.18 Проверка градуировочных
графиков должна проводиться
периодически по стандартным
образцам по соответствующим
методикам настоящего
4.1.19 В фотоколориметрических методах содержание определяемого оксида допускается находить методом сравнения оптической плотности исследуемого раствора (или его аликвотной части) с оптической плотностью стандартного раствора близкой концентрации.
Концентрация
В случае нарушения этого условия меняют навеску, разведение или аликвотную часть анализируемой пробы или стандартного образца раствора.
Массовую долю оксида x0, %, определяют по формуле
, (3)
где V — объем окрашенной фотометрируемой части исследуемого раствора, мл;
V0 — общий объем исследуемого раствора, мл;
т — масса навески, г;
Vа — объем аликвотной части исследуемого раствора, взятого для приготовления окрашенного раствора при фотометрировании, мл;
Сх — концентрация окрашенной
фотометрируемой части
, (4)
где Сст — концентрация стандартного раствора, мг/мл;
Дх и Дст — оптические плотности соответственно исследуемого и стандартного растворов.
4.1.20 При выполнении анализов рекомендуется параллельно проводить «глухой» опыт для учета загрязнений реактивов, дистиллированной воды и др.
4.1.21 Содержание вредных
веществ в воздухе рабочей
зоны, лаборатории, образующихся
в ходе анализа, не должно
превышать предельно
4.1.22 Контроль за содержанием вредных веществ в воздухе рабочей зоны лаборатории проводят по ГОСТ 12.1.005 и ГОСТ 12.1.007.
4.1.23 При работе с горючими и взрывоопасными веществами должны соблюдаться требования безопасности в соответствии с ГОСТ 12.1.010.
4.1.24 Все используемые электрические приборы должны соответствовать правилам устройства электроустановок (ПУЭ).
Эксплуатацию электрических
приборов проводят в соответствии с
правилами техники безопасности
при эксплуатации электроустановок,
а также правилами
4.1.25 Пожарная безопасность лабораторных помещений должна обеспечиваться в соответствии с ГОСТ 12.1.004, безопасность труда — в соответствии с ГОСТ 12.1.007.
4.1.26 При использовании в качестве реактивов опасных (едких, токсичных) веществ следует руководствоваться требованиями безопасности, изложенными в нормативных или технических документах на эти реактивы, применять индивидуальные средства защиты (респираторы) по ГОСТ 12.4.011 или ГОСТ 12.4.028, резиновые перчатки по ГОСТ 12.4.103, одежду по ГОСТ 27654 и ГОСТ 29058.
4.2 Определение влаги
Содержание влаги определяют весовым методом по разности между массой бюксы с навеской до и после высушивания.
4.2.1 Средства контроля и вспомогательное оборудование
Весы аналитические по ГОСТ 24104 с погрешностью измерения ±0,0002 г.
Эксикатор по ГОСТ 25336.
Шкаф сушильный.
Бюксы по ГОСТ 23932.
Кальций хлористый (хлорид кальция) по ГОСТ 450, прокаленный при температуре 700—800 °С, для заполнения эксикатора.
4.2.2 Порядок проведения испытания
Навеску массой 1 г помещают в предварительно высушенную до постоянной массы бюксу, ставят в сушильный шкаф, нагретый до температуры (105±5) °С, сушат 1,5—2 ч, после чего охлаждают в эксикаторе и взвешивают.
Перед взвешиванием крышку бюксы приоткрывают и быстро закрывают. Высушивание и охлаждение повторяют до тех пор, пока разность массы между двумя последующими взвешиваниями будет не более 0,0004 г.
Если при повторном
высушивании масса навески
4.2.3 Обработка результатов испытания
Массовую долю влаги X, %, определяют по формуле
, (5)
где m1 — масса бюксы с навеской до сушки, г;
т2 — масса бюксы с навеской после сушки, г;
m0 — масса навески, г.
Абсолютное допустимое расхождение между результатами двух параллельных определений не должно превышать, %:
— 0,10 при содержании влаги до 1,0 % по массе;
— 0,20 » » » св. 1,0 » » »
4.3 Определение потери массы при прокаливании
Потерю массы при прокаливании определяют весовым методом по разности массы тигля с навеской исследуемой пробы щебня (гравия) до и после прокаливания.
4.3.1 Средства контроля и вспомогательное оборудование
Весы аналитические по ГОСТ 24104 с погрешностью взвешивания ±0,0002 г.
Печь муфельная с номинальной температурой (1000±50) °С.
Эксикатор по ГОСТ 25336.
Фарфоровый тигель по ГОСТ 9147.
4.3.2 Порядок проведения испытания
Пробу подготавливают в соответствии с 4.1.2. Из подготовленной пробы, находящейся в сухом состоянии, отбирают навеску массой 1 г, которую помещают в предварительно прокаленный до постоянной массы фарфоровый тигель и взвешивают. Затем навеску помещают в муфельную печь и прокаливают в течение 2 ч при температуре (1000±50) °С.
После прокаливания тигель охлаждают в эксикаторе и взвешивают. Прокаливание повторяют до достижения постоянной массы. Если при повторном прокаливании масса навески увеличивается, для расчета принимают величину массы до ее увеличения.
4.3.3 Обработка результатов анализа
Потерю массы при прокаливании (п.п.п.), %, определяют по формуле