Автор: Пользователь скрыл имя, 15 Марта 2012 в 20:43, курс лекций
Человек использует теплоту во всех областях своей деятельности. Установление рациональных способов его использования, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых агрегатов невозможно без знания теоретических основ теплотехники. Теплота используется человечеством по двум принципиально различным направлениям: энергетическом и технологическом.
ВВЕДЕНИЕ
1. ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА.
1.1. Предмет и основные понятия
1.2. Параметры состояния
1.3. Уравнение состояния и термодинамический процесс
1.4 Первый закон термодинамики
Теплота и работа
Внутренняя энергия
Первый закон термодинамики
1.5.Теплоемкость газа
1.6. Уравнение состояния идеального газа
Смесь идеальных газов
1.7. Второй закон термодинамики
Основные положения второго закона термодинамики
1.8. Термодинамические процессы
Политропный процесс
1.9. Термодинамика потока
Первый закон термодинамики для потока
Критическое давление и скорость. Сопло Лаваля
Дросселирование
1.10. Сжатие газов
Объемный компрессор
17.2. Лопаточный компрессор
3.10.Реальные газы. Водяной пар. Влажный воздух
Свойства реальных газов
Уравнения состояния реального газа
Водяной пар
Характеристики влажного воздуха
ссм = сВ + d·сП . (6.18)
1.12. Термодинамические циклы
Циклы паротурбинных установок (ПТУ)
Циклы двигателей внутреннего сгорания (ДВС)
Циклы газотурбинных установок (ГТУ)
2.ОСНОВЫ ТЕОРИИ ТЕПЛООБМЕНА
2.1. Основные понятия и определения
2.2.Теплопроводность
Температурное поле. Уравнение теплопроводности
Тепловой поток, передаваемая теплопроводностью, пропорциональна градиенту температуры и площади сечения, перпендикулярного направлению теплового потока.
Стационарная теплопроводность через плоскую стенку
Стационарная теплопроводность через цилиндрическую стенку
Стационарная теплопроводность через шаровую стенку
2.3. Конвективный теплообмен
Факторы, влияющие на конвективный теплообмен
Закон Ньютона-Рихмана
Критериальные уравнения конвективного теплообмена
Свободная конвекция в неограниченном пространстве.
Вынужденная конвекция.
2.4. Тепловое излучение
Общие сведения о тепловом излучении
2.5.Теплопередача
Теплопередача через плоскую стенку
Теплопередача через цилиндрическую стенку
2.6. Теплообменные аппараты
Расчет теплообменных аппаратов
3.ТЕПЛОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ
3.1. Энергетическое топливо. Состав топлива
Характеристика топлива
Моторные топлива для поршневых ДВС
3.2. Котельные установки
Котельный агрегат и его элементы
3.3. Вспомогательное оборудование котельной установки
14.3. Тепловой баланс котельного агрегата
3.5. Топочные устройства
3.6. Сжигание топлива
Теплотехнические показатели работы топок
Физический процесс горения топлива
Определение теоретического и действительного расхода воздуха на горение топлива
Количество продуктов сгорания топлива
Вопросы экологии при использовании теплоты
18.1. Токсичные газы продуктов сгорания
18.2. Воздействия токсичных газов
18.3. Последствия парникового эффекта
Литература
Топливо забрасывается питателем ПМЗ и равномерно распределяется по решетке, Удаляют очаговые остатки путем их сбрасывания в зольный бункер при повороте колосников около своей оси от ручного привода. В топке, показанной на рис. 15.2, в, загрузка осуществляется под воздействием собственного веса топлива. Топки с наклонной решеткой (с углом 40-50, что соответствует углу естественного откоса сжигаемого топлива) используют обычно для сжигания древесных отходов и кускового торфа. Возвратно-поступательное движение колосников на наклонно-переталкивающей решетке (рис. 15.2,г) дает возможность осуществить непрерывную шуровку слоя топлива, В таких топках возможно сжигание горючих сланцев, бурых углей с большой зольностью и повышенной влажностью и каменных углей с большим выходом летучих веществ.
Топки с шурующей планкой (рис. 15.2,д) предназначены для сжигания многозольных бурых и неспекающихся каменных углей. Шурующая планка выполняется в виде трехгранной призмы из литого чугуна или стали. Угол наклона передней плоскости к горизонтальной плоскости составляет 35, а задней – 15. При движении вперед (к задней стенке топки) топливо подрезается задней гранью и осуществляется шуровка горящего слоя топлива.
Камерные топки для сжигания твердого топлива используют в котельных агрегатах средней (10-42 кг/с) и большой ( 42 кг/с) производительности.
Основные преимущества камерных топок заключаются в следующем:
1) возможность экономичного использования практически всех сортов угля, в том числе и низкокачественных, которые трудно сжигать в слое;
2) хорошее перемешивание топлива с воздухом, что позволяет работать с небольшим избытком воздуха (а=1,2-1,25);
3) возможность повышения единичной мощности котельного агрегата:
4) относительная простота регулирования режима работы и, следовательно, возможность полной автоматизации топочного процесса.
Сжигание твердого топлива в факеле. Большое значение для работы пылеугольных топок имеет конструкция применяемых горелок. Горелки должны обеспечивать хорошее перемешивание топлива с воздухом, надежное зажигание аэросмеси, максимальное заполнение факелом топочной камеры и легко поддаваться регулированию по производительности в заданных пределах.
Сжигание мазута и газов в топках. Жидкое топливо, сжигаемое в топках, подвергается предварительному распылению с помощью форсунки, являющейся элементом горелки. Пол горелкой в общем случае понимается агрегат, включающий помимо форсунки воздухонаправляющий аппарат, запальное устройство и механизм управления.
Качественное сжигание жидкого топлива обуславливается тонкостью его распыления. Для этой цели используют форсунки, которые, кроме того, обеспечивают необходимый диапазон регулирования расхода топлива и устойчивое зажигание смеси.
В зависимости от способа распыления топлива форсунки подразделяются на четыре класса: механические, паровые, воздушные (пневматические) и комбинированные. На рис.15.4 показаны принципиальные схемы применяемых форсунок.
Форсунки с механическим распылением разделяют на прямоструйные, центробежные и ротационные. В прямоструйных форсунках (Рис.15.4,а) дробление струи топлива на мельчайшие капли происходит при его продавливании под значительным давлением (1-2 Мпа) через сопло малого диаметра.
В центробежных форсунках (Рис.15.4,б,в) топливо распыляется под действием центробежных сил, возникающих при закручивании топливного потока.
В ротационных форсунках (Рис.15.4,г) топливо подается внутрь быстро вращающегося распыливающегося стакана, где оно растекается под действием центробежных сил, образуя тонкую пленку. На выходной кромке стакана тонкая пленка подхватывается подводимым первичным воздухом.
Паровые и пневматические форсунки можно объединить в один класс – форсунки с распыливающей средой. В паровых форсунках (Рис.15.4,д) в качестве такой среды используют водяной пар с давлением 0,4-1,6 Мпа., а в пневматических форсунках (Рис.15.4,е) используют воздух низкого (0,002-0,008 Мпа) и высокого (0,2-1 Мпа и выше) давления.
Газовые горелки бывают:
кинетические - полного предварительного смешения (газ с воздухом смешивается до выхода из горелки);
диффузионно-кинетические – частичного предварительного смешения;
диффузионные – внешнего смешения.
По способу подачи воздуха горелки делятся на инжекционные и дутьевые (принудительной подачей воздуха).
На рис.15.5 показаны основные принципиальные схемы газовых горелок.
Важнейшая теплотехническая характеристика топочных устройств, основываясь на которой решают вопросы их конструкции и оценивают интенсивность работы, - тепловое напряжение объема топочного пространства. Оно выражается отношением Q/Vт и представляет собой количество теплоты, выделившейся при сжигании определенного количества топлива в единицу времени В и приходящейся на 1 куб.м объема топочного пространства, т.е.:q = Q/Vт = Qpн B/Vт. (15.1)Единицей измерения q для является Вт/м3.
Если значение q будет превышать определенную числовую величину, установленную практически, то за время нахождения в топке топливо не сгорит полностью. Опыт эксплуатации котельных агрегатов показал, что для различных видов топлива, способов сжигания и конструкций топок допустимое значение q изменяется в широких пределах. Например, для слоевых топок с неподвижной решеткой и ручным забросом топлива q = 290 – 350 кВт/м3, у слоевых механизированных топок qх =290 – 465 кВт/м3, для камерных топок при сжигании угольной пыли q = 145 – 230 кВт/м3, а при сжигании в них газа или мазута qх = 230 – 460кВт/м3.
В слоевых топках, в которых часть топлива сгорает в слое, а другая часть в топочном пространстве, применяют еще одну характеристику интенсивности тепловой работы топки, называемую тепловым напряжением зеркала горения и имеющую вид:qR=Q/R=Qpн/R. (15.2)
Единицей измерения для qR является Вт/м2; В – кг/с; Qрн – Дж/кг и для - R м3.
Эта характеристика представляет собой количество теплоты, выделившейся при сжигании определенного количества топлива в единицу времени и приходящейся на 1 м2 площади поверхности зеркала горения. Установлено, что чем больше qR, тем больше потеря теплоты от механического недожога вследствие уноса из пределов топки мелких, не успевших сгореть частиц топлива. Значения теплового напряжения зеркала золы, конструкции топки и т.д. и изменяются в широких пределах – от 350 до 1100 кВ/м2. Очевидно, что чем больше значение qu иqR для заданных размеров топки и одного и того же вида топлива, тем интенсивней (форсированней) протекает работа топки, т.е. больше сжигается топлива в единицу времени и больше вырабатывается теплоты. Однако форсировать топку можно лишь до определенного предела, ибо в противном случае возрастают потери от химической и механической неполноты сгорания и снижается КПД.
Горение топлива – химическая реакция соединения горючих элементов топлива с окислителем при высокой температуре, сопровождающийся интенсивным выделением теплоты. В качестве окислителя используют кислород воздуха.
Процессы горения разделяют на 2 группы:
1). гомогенное горение – горение газообразных горючих (характеризуется системой "газ+газ");
2). гетерогенное горение – горение твердых и жидких горючих (характеризуется системой "твердое тело+газ" или "жидкость+газ").
Процесс горения может протекать с разной скоростью – от медленного до мгновенного. Медленное горение – самовозгорание твердого топлива при его хранении на складах. Мгновенное горение представляет собой взрыв. В теплоэнергетических установках практическое значение имеет такая скорость реакции, при которой происходит устойчивое горение, т.е. при постоянной подаче в зону горения топлива и окислителя. При этом соотношение концентрации топлива и окислителя должен быть определенным. При нарушении этого соотношения (богатая смесь, бедная смесь) скорость реакции снижается и уменьшается тепловыделение на единицу объема.
Горение – это в основном химический процесс, т.к. в результате его протекания происходит качественные изменения состава реагирующих масс. Но в то же время химическая реакция горения сопровождается различными физическими явлениями: перенос теплоты, диффузионный перенос реагирующих масс и др.
Время горения топлива складывается из времени протекания физических (физ) и химических процессов (хим):
гор = физ + хим . (16.1)
Время протекания физических процессов состоит из времени, необходимого для смешивания топлива с окислителем (см) и времени, в течении которого топливо – воздушная смесь подогревается до температуры воспламенения (tн):
физ = см + н . (16.2)
Время горения (гор) определяется скоростью наиболее медленнего процесса.
Горение газообразного топлива. Минимальная температура при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси, условий зажигания, условий отвода теплоты в каждом конкретном устройстве и т.д.
Горючий газ в смеси с окислителем сгорает в факеле. Различают два метода сжигания газа в факеле – кинетический и диффузионный. При кинетическом сжигании до начала горения газ предварительно смешивается с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. При этом скорость горения не должна превышать скорости химических реакций горения гор = хим.
Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса будет ограничена скоростью смешивания газа с воздухом гор = физ.
Кроме этого существует смешанное (диффузионно-кинетическое) горение. При этом газ предварительно смешивается с некоторым количеством воздуха, затем полученная смесь поступает в рабочий объем, где отдельно подается остальная часть воздуха.
В топках котельных агрегатов в основном используют кинетический и смешанный способы сжигания топлива.
Горение твердого топлива. Процесс горения состоит из следующих стадий: 1) подсушка топлива и нагревание до температуры начала выхода летучих веществ; 2) воспламенение летучих веществ и их выгорание; 3) нагревание кокса до воспламенения; 4) выгорание горючих веществ из кокса. Эти стадии иногда частично накладываются одна на другую.
Выход летучих веществ у различных топлив начинается при различных температурах: у торфа при 550-660К, у бурых углей при 690-710К, у тощих углей и антрацита при 1050-1070К.
Горение жидкого топлива. Основным жидким топливом, используемым в теплоэнергетике и промышленной теплотехнике является мазут. В установках небольшой мощности также используют смесь технического керосина со смолами.
Наибольшее применение получило метод сжигания в распыленном состоянии. Этот метод позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.
Процесс горения жидкого топлива можно разделить на следующие стадии: 1) нагревание и испарение топлива; 2) образование горючей смеси; 3) воспламенение горючей смеси от постороннего источника (искры, раскаленной спирали и т.п.); 4) собственно горение смеси.
Горючие вещества топлива взаимодействуют с кислородом воздуха в определенном количественном соотношении. Расход кислорода и количество получающихся продуктов сгорания рассчитывают по стехиометрическим уравнениям горения, которые записывают для 1 кмоля каждой горючей составляющей.
Стехиометрические уравнения горения горючих составляющих твердого и жидкого топлива имеют вид:углерода С + О2 = СО2:
12кг С + 32кг О2 = 44кг СО2 ;
1кг С + (32/12)кг О2 = (44/12)кг СО2 ; (16.3)
водорода 2Н2 + О2 = 2Н2О :
4кг Н2 + 32кг О2 = 36кг Н2О ;
1кг Н2 + 8кг О2 = 9кг Н2О . (16.4)
серы S + O2 = SO2 :
32кг S + 32кг O2 = 64кг SO2 ;
1кг S + 1кг O2 = 2кг SO2 ; (16.5)Для горения 1 кг углерода, водорода и серы необходимо соответственно 8/3, 8 и 1 кг кислорода. В топливе находится Ср/100 кг углерода, Нр/100 кг водорода, Sлр/100 кг летучей серы и Ор/100 кг кислорода. Тогда для горения 1 кг топлива суммарный расход кислорода будет равен:МоО2 = (8/3Ср + 8Нр + Sлр - Ор ) / 100 . (16.6)Так как массовая доля кислорода в воздухе равна 0,232, то массовое количество воздуха определяется по формуле:
Мо = (8/3Ср + 8Нр + Sлр - Ор ) / 100 · 100/23,2 .
Мо = 0,115 Ср + 0,345 Нр + 0,043(Sлр - Ор ) . (16.7)
При нормальных условиях плотность воздуха о= 1,293кг/м3. Тогда объемное количество воздуха, необходимого для горения 1кг топлива можно рассчитать по следующей формуле:
Vо = Мо / со= Мо / 1,293 м3 /кг.
Vо = 0,0889 (Ср + 0,3755Sлр ) + 0,265 Нр – 0,033Ор . (16.8)
Для газообразного топлива расход необходимого воздуха Vо определяют из объемных долей горючих компонентов газа с использованием стехиометрических реакций:
Н2+0,5О2=Н2О; СО+0,5О2=СО2; СН4+2О2=СО2+2Н2О; Н2S+1,5О2=SО2+Н2О.
Теоретическое количество воздуха (м3/м3), необходимого для сжигания газа, определяют по формуле:
Vо=0,0476[0,5СО+0,5Н2+2СН4+1,
Количество воздуха Vо, рассчитываемого по формулам (16.8) и (16.9), называется теоретически необходимым. То есть Vо представляет собой минимальное количество воздуха, необходимое для обеспечения полного сгорания 1 кг (1м3) топлива при условии, что при горении используется весь содержащийся в топливе и подаваемый вместе с воздухом кислород.
В реальных условиях из-за технических трудностей ощущается местный недостаток или избыток окислителя (воздуха), в результате ухудшается полное горение топлива. Поэтому воздух подается в большем количестве по сравнению с его теоретическим количеством Vо. Отношение действительного количества воздуха (Vд), подаваемого в топку, к теоретически необходимому количеству называется коэффициентом избытка воздуха:
= Vд / Vо . (16.10)
При полном сгорании топлива продукты сгорания содержат газы: СО2, S2O, N2, О2 и пары воды Н2О, т. е. СО2 + S2O + N2 + О2 + Н2О = 100 %. Полный объем продуктов сгорания Vг (м3/кг) представляет собой сумму объемов сухих газов Vс.г. и водяных паров VН2О :