Растительная клетка

Автор: Пользователь скрыл имя, 14 Февраля 2012 в 19:17, контрольная работа

Описание работы

Химический состав Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы:
Структурные компоненты, представленные целлюлозой у большинства автотрофных растений.
Компоненты матрикса, т. е. основного вещества, наполнителя оболочки – гемицеллюлозы, белки, липиды.
Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие ее изнутри) – лигнин и суберин.
Компоненты, адкрустирующие стенку, т.е. откладывающиеся на ее поверхности, - кутин, воск.

Работа содержит 1 файл

Клеточная стенка.docx

— 57.76 Кб (Скачать)

Структура мембран  до настоящего времени не может считаться  раскрытой. Разрешающая сила электронного микроскопа недостаточна, чтобы увидеть  расположение молекул внутри мембран, в связи с этим большинство  гипотез о структуре мембран  покоится на определенных допущениях. Эти допущения основывались на том, что мембраны под электронным  микроскопом имеют трехслойное  строение. Еще в 1935 г. Дж. Даниэлян и Г. Даусон создали трехслойную модель мембраны, которая получила название «бутербродной». Согласно этой модели основу мембраны составляет двойной слой липидных молекул, обращенных друг к другу гидрофобными участками. С двух сторон располагаются сплошным слоем белки. Однако с использованием современных методов исследования показано, что многие свойства мембран нельзя объяснить с помощью этой модели. Так, методом замораживания со скалыванием было показано, что белки мембраны, состоящие по преимуществу из гидрофобных аминокислот, могут находиться внутри двойного слоя липидов в углеводородной фазе. 
 
 

Схема строения мембраны:  

1 — липидный бислой;  

2 — интегральные  белки;  

3 — периферические  белки;  

4 — углеводы 

Наибольшее распространение  получила модель жидкостно-мозаичной  структуры мембран (С. Сингер и Дж. Николсон, 1972), согласно которой двойной слой полярных липидов, представляющий структурную основу мембраны, не является непрерывным. Мембрана как бы прошивается белковыми молекулами. При этом различают белки: 1) интегральные, пронизывающие всю толщу мембран; 2) полуинтегральные, погруженные в мембрану примерно наполовину; 3) периферические, располагающиеся на поверхности мембран, но не образующие сплошного слоя. Глобулы интегральных и полуинтегральных белков связаны с липидами гидрофильно-гидрофобными взаимодействиями. Однако многие белки непрочно связаны с липидами и могут перемещаться в «липидном озере», в котором они как бы плавают. Предполагают, что молекулы некоторых белков-ферментов могут вращаться в мембране и этому способствует изменение их конформации. Молекулы липидов тоже меняют свое расположение в пределах бислоя. Это может быть смена мест внутри слоя (латеральная диффузия), а также перескок (флип-флоп) с одной стороны мембраны на другую. Миграция и белков, и липидов осуществляется как путем диффузии, так и активным путем, идущим с использованием энергии. Флип-флоп требует обязательной затраты энергии. Обнаруженная способность к свободному передвижению в мембранах подтверждает представление о жидкостном состоянии мембран, а происходящие изменения расположения компонентов мембран — об их динамичности. Необходимо помнить, что липиды различаются по размерам, конфигурации, заряду (фосфоглицериды, гликолипиды и др.). В разных мембранах возможно их различное сочетание. Различны и мембранные белки. Вероятно, в зависимости от липидов и белков, входящих в состав той или иной мембраны, характер ее структуры различен. Липиды находятся при физиологических условиях в жидком (разрыхленном) состоянии, что обеспечивается присутствием ненасыщенных жирных кислот. Исследования последних лет выявили существенное различие в структуре внутренней и наружной поверхности мембран, их асимметричность. К белкам на наружной поверхности мембраны присоединяются углеводы с образованием гликопротеидов. Эти вещества имеют значение в образовании тканей, а также играют роль «ярлыка» клетки, участвуя в их взаимодействии. Асимметричным может быть и расположение разных липидов. Именно асимметрия обусловливает то обстоятельство, что в большинстве случаев мембраны проницаемы для веществ в одном направлении. Поверхностная одинарная мембрана — плазмалемма — отграничивает толщу цитоплазмы от пектоцеллюлозной оболочки. От свойств плазмалеммы во многом зависит характер обмена между внешней средой и клеткой. Вся поверхность плазмалеммы покрыта глобулярными частицами. Полагают, что в этих частицах сосредоточены ферменты, участвующие в образовании клеточной оболочки. Плазмалемма обладает полупроницаемостью, хотя и не идеальной. Она хорошо проницаема для воды и значительно слабее для растворенных веществ. В связи с этим показано, что белки, расположенные в плазмалемме, приспособлены к избирательному транспорту отдельных веществ и воды. Мембранные белки, образующие внутри мембраны каналы, проницаемые для воды, носят название аквапорины. Ряд белков плазмалеммы осуществляет рецепторную функцию, в частности, связываясь с гормонами. Имеются данные, что в периоды активного роста поверхность плазмалеммы становится волнистой. В процессе роста клетки наблюдается быстрое увеличение поверхности плазмалеммы. Это происходит путем присоединения к ней уже сформированных участков мембран, принадлежащих пузырькам аппарата Гольджи. 

Эндоплазматический  ретикулум (ЭПР) или эндоплазматическая сеть — сложная система каналов, окруженных мембранами (6—7 нм), пронизывающая всю толщу цитоплазмы. Каналы имеют расширения — цистерны, которые могут обособляться в крупные пузырьки и сливаться в вакуоли. Каналы и цистерны ЭПР заполнены электронно-прозрачной жидкостью, содержащей растворимые белки и другие соединения. К мембране ЭПР могут быть прикреплены рибосомы. Благодаря этому поверхность мембран становится шероховатой. Такие мембраны носят название гранулярных, в отличие от гладких — агранулярных. Мембраны ЭПР связаны с мембраной ядра. Имеются данные, что эндоплазматический ретикулум возникает благодаря выростам, образующимся на наружной ядерной мембране. С другой стороны ядерная оболочка воссоздается из пузырьков ЭПР на стадии телофазы. 

Физиологическое значение эндоплазматического ретикулума многообразно. Мембраны ЭПР разделяют клетку на отдельные отсеки (компартменты) и тем клетке по всей цитоплазме. Аппарат Гольджи имеет два конца, два полюса: на одном полюсе, формирующем, образуются новые цистерны, на втором полюсе, секретирующем, происходит образование пузырьков. И тот, и другой процесс происходят непрерывно: по мере того как одна цистерна образует пузырьки и, таким образом, расформировывается, ее место занимает другая цистерна. Расстояние между отдельными цистернами постоянно (20—25 нм). Одна из основных функций аппарата Гольджи — это накопление и секреция веществ и, прежде всего углеводов, что проявляется в его участии в формировании клеточной оболочки и плазмалеммы. Одновременно цистерны аппарата Гольджи, по-видимому, могут служить для удаления некоторых веществ, выработанных клеткой. 

Вакуоль — полость, заполненная клеточным соком  и окруженная мембраной (тонопластом). В молодой клетке обычно имеется несколько мелких вакуолей (провакуолей). В процессе роста клетки образуется одна центральная вакуоль, которая может занимать до 90% объема клетки. В образовании вакуоли могут участвовать пузырьки, отделяющиеся от аппарата Гольджи. Возможно образование «вторичных» вакуолей из участков цитоплазмы, изолированных мембраной эндоплазматического ретикулума, в которых с помощью гидролитических ферментов произошло переваривание веществ. Из мембран эндоплазматической сети и возникает, по-видимому, тонопласт. Тонопласт обладает избирательной проницаемостью, в нем локализована система активного транспорта веществ. Во многих случаях вещества, проникающие через плазмалемму, не проникают через тонопласт и не попадают в вакуоль. Вакуоль содержит клеточный сок, в котором растворены соли, органические кислоты, сахара, ферменты, метаболиты (алкалоиды, фенолы) и другие соединения. В связи с этим она определяет осмотическое поглощение воды, что особенно важно при росте растяжением и для поддержания тургора клетки. В вакуолях ряда клеток содержится пигмент (антоциан), который обусловливает окраску цветков, плодов, а также частично осеннюю окраску листьев. 

Вакуоли — это  место, где могут аккумулироваться и сохраняться запасные питательные  вещества (сахароза, минеральные соли и др.), если в данный момент клетка в них не нуждается. В вакуолях содержится много протеолитических ферментов, таких как протеазы, рибонуклеазы, гликозидазы и др. Предполагают участие этих ферментов в образовании веществ клеточных стенок. Показано, что богатые белками-ферментами вакуоли прорастающих семян (т. н. содержащие белок вакуоли) обеспечивают гидролиз белков до аминокислот и синтез новых белков, необходимых для формирования проростка. В вакуоль также экскретируются различные клеточные отбросы, которые затем могут там перерабатываться и обезвреживаться. Тонопласт может образовывать инвагинации. При этом часть цитоплазмы включается в вакуоль и там подвергается действию различных ферментов (переваривается). 

Лизосомы — органеллы  диаметром до 2 мкм — окружены мембраной, возникшей из мембран  эндоплазматической сети или аппарата Гольджи. Внутренняя полость лизосом заполнена жидкостью, в которой содержатся ферменты, главным образом гидролитические (протеазы, нуклеазы, липазы и др.). Ферменты, катализирующие процессы распада и сосредоточенные в лизосомах, благодаря мембране оказываются изолированными от остального содержимого клетки. Это имеет большое значение, так как предупреждает распад веществ, в частности белков, находящихся вне лизосом. Вместе с тем в лизосомах может происходить разрушение чужеродных веществ, попавших в клетку. 

Микротельца — это окруженные одинарной мембраной пузырьки сферической формы, более мелкие, чем лизосомы. Их диаметр равен 0,5—1,5 мкм. Микротельца возникают из ЭПР. Основная функция — накопление и изоляция ферментов. Пероксисомы содержат ряд окислительных ферментов (каталаза, гликолатоксидаза и др.) и осуществляют окисление различных соединений с образованием перекиси водорода Н202. В пероксисомах проходят отдельные этапы процесса фотодыхания. Другой тип микротелец глиоксисомы встречаются в масличных семенах и в других тканях растений, накапливающих масла. Содержат те же ферменты, что и пероксисомы, а также ферменты глиоксалатного цикла, которые участвуют в расщеплении запасных жиров до Сахаров. В проростках этот процесс используется как поставщик энергии для роста. В растительной клетке масла собираются в специальные органеллы, которые иногда называют липидными тельцами или олеосомами. Они окружены однослойной мембраной, состоящей из фосфолипидов, которые гидрофобной частью повернуты внутрь к полости органеллы. В мембране имеются специальные белки олеосины. Липиды олеосом при прорастании семян разрушаются и с помощью ферментов глиоксосом подвергаются изменениям.

2

Подходы к классификации  тканей

Ткани делят на ПРОСТЫЕ и СЛОЖНЫЕ. Простыми называют ткани, состоящие из клеток более или менее одинаковых по форме и функциям. Сложные ткани состоят из клеток, разных по форме и функция, но тесно взаимосвязанных в своих жизненных отправлениях. Пример первых – столбчатая хлоренхима, губчатая хлоренхима, колленхима и др., вторых – ксилема, флоэма и др..

Ткани, делятся на образовательные( меристемы) и постоянные. Образовательными называются специализированные ткани, клетки которых сохраняют длительную способность к делению, обеспечивая рост растения и отдельных его органов. С учетом положения в теле растения их делят на верхушечные (находится на апексах корня и побега), вставочные(свойственны побегу –стеблю и листьям) и боковые ( представлены главным образом в осевых органах – в корне и стебле голосеменных и двухдольных покрытосемянных).

Постоянными называют ткани, клетки которых утратили способность  к делению ( полностью или сохраняют  её потенциально) и специализируются на выполнениях других функций: защитной, запасающей, механической, проводящей и т.д.. С учетом происхождения, преобладающей  функции и положения в теле растения постоянные ткани, в свою очередь, делят на покровные, основные, проводящие.

С учетом происхождения  и времени появления в процессе морфогенеза и органа ткани ( и образовательные, и постоянные) называют первичными или вторичными. Первичные меристемы ведут свое начало от первой клетки нового организма – зиготы, который свойственна способность к делению.

Первичные меристемы  первыми формируются при заложении  нового организма и обеспечивают его первичный рост. Это – верхушечные  и вставочные меристемы.

Вторичными называют меристемы, которые формируются  в вегетативных органах позднее  первичных и обеспечивают их вторичный  рост. Это боковые меристемы- камбий и феллоген( пробковый камбий)

Те постоянные ткани, клетки которые дифференцируются из производных клеток первичной меристемы, называют ПЕРВИЧНЫМИ. К ним относят  ткани: первичные покровные, первично проводящие и основные. Постоянные ткни , начало которым дали производные клетки вторичной меристемы, называют вторичными. К ним относятся вторичную покровную ткань, вторичные проводящие ткани.

5

СТЕБЕЛЬ  

Стебель - осевой вегетативный орган растения, обладающий верхушечным  неограниченным ростом, положительным  гелиотропизмом, радиальной симметрией, несущий листья и почки. Он соединяет  два полюса питания растения - корни  и листья, выносит листья к свету, запасает питательные вещества.

Дерево - жизненная  форма растения с одним многолетним  одревесневающим стеблем - стволом, на ветвях которого (в кроне) находятся  почки возобновления.

Кустарник-жизненная форма растения с несколькими многолетними одревесневающими стеблями, несущими почки возобновления.

Многолетняя трава - жизненная форма растения, несущего один или несколько неодревесневающих побегов, надземная часть которых осенью отмирает, а подземная часть с почками возобновления зимует.

Однолетняя трава - жизненная форма растения, у  которого жизненный цикл продолжается от прорастания семени до образования  собственных семян и отмирания, т. е. один вегетационный период.

Главный стебель - стебель, развивающийся из почки зародыша семени.

Конус нарастания - многоклеточный массив верхушечной образовательной  ткани, которая за счет постоянного  деления клеток формирует все  органы и ткани побега.

Узел - участок стебля, от которого отходит лист.

Междоузлие - участок  стебля между двумя узлами.

Подсемядольное колено - нижний участок стебля между семядольным  узлом и корнем.

Надсемядольное колено - участок стебля между узлом первого

 настоящего листа  и семядольным.

Верхушечный рост - рост стебля в длину за счет работы конуса нарастания верхушечной почки.

Вставочный рост - рост стебля в длину за счет работы образовательной ткани в основаниях междоузлий.

Прямостоячий стебель - стебель, растущий вверх перпендикулярно  к поверхности земли.

Ползучий стебель - стебель, который стелется по поверхности

 почвы и укореняется  с помощью придаточных корней.

Вьющийся стебель - стебель, обвивающийся вокруг опоры. Цепляющийся стебель - стебель, который  поднимается вверх, цепляясь за опору  с помощью усиков.

Информация о работе Растительная клетка