Получение лекарственных препаратов методами биотехнологии

Автор: Пользователь скрыл имя, 02 Декабря 2012 в 16:01, реферат

Описание работы

Цель данной работы – рассмотреть основные направления и использование новых биологических технологий в производстве лекарственных препаратов.

Содержание

ВВЕДЕНИЕ
1. Слагаемые биотехнологического процесса производства лекарственных средств
2. Получение антибиотиков
3. Получение гормонов
4. Получение интерферонов, интерлейкинов, факторов крови
5. Моноклональные антитела и ДНК- или РНК- пробы
6. Рекомбинантные вакцины и вакцины-антигены
7. Ферменты медицинского назначения
ЗАКЛЮЧЕНИЕ
Список литературы

Работа содержит 1 файл

получение лп.docx

— 72.65 Кб (Скачать)

 

Высокая эволюционная консервативность отдельных участков полипептидной  цепи может свидетельствовать об их принципиально важной функциональной роли как носителей информации о  специфической функции гормонального  белка.[5] 
Гормон роста, или соматотропный гормон (СТГ), продуцируется специализированными клетками гипофиза - соматотрофами. Содержание соматотропного гормона в одном гипофизе человека составляет около 5 мг и по крайней мере на порядок превышает содержание других гормонов. 
Биосинтез и секреция соматотропного гормона находятся под сложным контролем, включающим регуляцию в первую очередь гипоталамическими факторами: ингибирующую регуляцию соматостатином и стимулирующую СТГ-рилизинг фактором, а также гормонами - трийодтиронином и глюкокортикоидами, опиоидными пептидами и т.д. 
Секреция соматотропного гормона зависит также от концентрации в плазме крови метаболитов, в регуляции обмена которых участвует СТГ, увеличивается в условиях дефицита энергетических субстратов, а также во время сна и в стрессовых ситуациях.[7] 
Продуцируемый гипофизом соматотропный гормон отличается высокой гетерогенностью, являющейся результатом как альтернативного сплайсинга мРНК соматотропного гормона, так и посттрансляционных модификаций - протеолиза, фосфорилирования, гликозилирования, димеризации и олигомеризации. При стимуляции секреции гормона все эти формы высвобождаются из гипофиза в циркуляцию и через 30 мин более 50% соматотропного гормона присутствует в плазме крови в мономерной форме, 27% - в димерной и менее 20% - в олигомерной. 
Среди мономерных форм соматотропного гормона доминирует 22 кдальтон СТГ (83%), в меньших количествах присутствует 20 кдальтон СТГ (11%) и около 6% составляют различные кислые формы гормона. Таким образом, реакция организма на соматотропный гормонаявляется результатом суммарного действия белков, несколько различающихся по физико-химическим, биологическим и иммунологическим свойствам [1]. 
Несмотря на большой прогресс, достигнутый в исследовании соматотропных гормонов человека и животных, механизм их действия на молекулярном уровне изучен недостаточно. Отсутствие данных о точной пространственной структуре гормонов этой группы затрудняет исследования их взаимодействия с рецепторами, ограничивает возможности изучения структурно-функциональных взаимоотношений различных участков полипептидной цепи, не позволяет в полной мере использовать достижения белковой инженерии для создания аналогов соматотропинов. 
Рекомбинантный соматотропин, получивший название соматрем, стал вторым биосинтетическим фармацевтическим препаратом. СТГ, биологически чистый и свободный от вирусных загрязнений, впервые был получен в 1980 году фирмой «Genentech». Гормон, синтезированный в генетически сконструированных клетках кишечной палочки, отличается от гормона, выделенного из гипофиза, дополнительным остатком метионина на NН– конце молекулы [3]. 
На первом этапе клонировали двунитевую ДНК-копию мРНК и расщеплением рестрикционными эндонуклеазами получили последовательность, которая кодирует всю аминокислотную последовательность гормона, за исключением первых 23 аминокислот. Затем клонировали синтетический полипептид, соответствующий аминокислотам от 1-й до 23-й.

Далее два фрагмента объединяли, затем «подстроили» к паре промоторов (промотор – специфическая последовательность в ДНК, необходимая для инициации  транскрипции РНК-полимеразы) и участку  связывания рибосом. Конечный выход  гормона составил 2,4 млг на 1 мл культуры E.cjli (100000 молекул гормона на клетку). СТГ, синтезированный в бактериях, обладал нужной м.м. и не связан с каким-либо бактериальным белком, от которого его необходимо было отщеплять. 
Изменяя аминокислотную последовательность СТГ посредством модификации кодирующего его гена, в бактериальных клетках можно синтезировать аналоги гормона, очень важные для изучения активных участков молекулы и этиологии карликовости на молекулярном уровне. 
Используя методы рекомбинантных ДНК, можно синтезировать и другие факторы роста и факторы дифференцировки тканей, выделив вначале их мРНК, затем получив соответствующие гены. Это относится к соматомедину А, стимулирующему фиксацию серы в хряще, образование которого индуцируется соматотропином.[7] 
В 1982 году выделен и синтезирован полипептид, содержащий из 44 аминокислотных остатков, обладающий полной биологической активностью гипоталамического ризилинг-фактора соматотропина (СТГ-РФ). Введение СТГ-РФ способно компенсировать недостаток соматотропина. Примнение СТГ-РФ возможно не только для лечения гипофизарной карликовости, но и при некоторых формах диабета и для ускорения регенерации тканей у людей, получивших сильные ожоги. 
Весь технологический цикл состоит из пяти функционально различных этапов: 
1) ферментация; 
2) первичная очистка белка; 
3) хроматографическая очистка; 
4) изготовление лекарственной формы; 
5) анализ качества субстанции и лекарственной формы соматогена.  
Важной особенностью технологического процесса является обеспечение апирогенности при проведении хроматографической очистки белка. 
Неотъемлемой составной частью каждого технологического цикла промышленного производства является проведение сложного комплекса анализов качества продукта. В основе объема и номенклатуры этих анализов лежат соответствующие рекомендации ВОЗ.[10] 
В настоящее время разработан более совершенный препарат СТГч из ГТЧ, лишенный агрегированных форм и консерванта, - аусоматин. При производстве мономерных препаратов СТГч (например, аусоматина) получаются значительные количества агрегированных форм соматотропина в виде отходов производства. Разработан оригинальный способ превращения нековалентно связанного димера и полимера в мономер. Кроме того, во время этого процесса получаетсяковалентно связанный димер и полимер СТГч - мало изученные компоненты. 
Интересны разработки по получению 20К варианта СТГч. Перспективной задачей является получение и изучение не только различных форм СТГ, но и иммобилизованного СТГ с целью получения пролонгированного действия гормона. Разработан оригинальный способ получения иммобилизованного СТГч, обладающего пролонгированным действием [4]. 
Параллельно с получением СТГч была создана оригинальная комплексная технология получения гормонов аденогипофиза, в том числе всех видоспецифических, и некоторых их модификаций из ГТЧ.

 Важное значение имеет  реализация целевой программы  по созданию лечебного препарата  СТГ (соматогена), полученного методом  генной инженерии.  
 
Клинический опыт показал, что, оптимизируя лечение низкорослости, целесообразно иметь в арсенале несколько аналогичных фармацевтических препаратов, получаемых различными технологиями или даже методами (СЧ, аусоматин, соматоген). Длительное лечение (годами) одним препаратом СТГч вызывает в организме уменьшение чувствительности в нему. Частично это может быть результатом образования антител, однако основную причину надо искать на уровне рецепторов и процессинга гормона.[2] 
Работа с ГТЧ, а также комплексные исследования выделяемых гормонов и их различных форм дают возможность изучать созданные природой системы и лучше их понять. Существование различных нативных форм СТГч в организме свидетельствует об их целесообразности и о возможном применении, например, в клинике. 
При создании новых препаратов СТГч необходимо в первую очередь ориентироваться на нативные природные формы гормона и в случае целесообразности масштабировать их методом генной инженерии, как это делается с мономером СТГч. 
При производстве препаратов СТГч из ГТЧ успешно реализуется комплексная промышленная технология получения и других гормонов аденогипофиза (ЛГч, ФСГч, ТТГч и др.). Необходимо оптимизировать производство, внедряя новые прогрессивные методы (аффинную хроматографию и др.); получать особочистые гормоны по комплексной технологии. Надо расширить производство и применение наборов иммуномикроанализа гормонов аденогипофиза для диагностики и биотехнологии, осуществить регламентированное производство стандартизированных антител различной гаммы, создавать новые препараты СТГч, в том числе иммобилизованные.[2] 
Тот факт, что СТГ влияет на белковый, жировой, минеральный обмен, действует на уровне клетки, не имея органа-мишени, и является анаболиком, дает большие перспективы его применения для стимуляции репарационных процессов и лечения различных заболеваний. Более широкое изучение этих вопросов, как и возможности применения различных модифицированных форм и вариантов СТГч, - актуальная и перспективная задача.[2]

Получение инсулина в биотехнологии 
Инсулин, пептидный гормон островков Лангерганса поджелудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови. До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Препарат отличался от человеческого инсулина 1—3 аминокислотными заменами, так что возникала угроза аллергических реакций, особенно у детей. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.[8] 
Компания EliLilly с 1982 г. производит генноинженерный инсулин на основе раздельного синтеза Е. coliе А- и В-цепей. Стоимость продукта значительно снизилась, получаемый инсулин идентичен человеческому.

С 1980 г. в печати имеются сообщения о клонировании гена проинсулина — предшественника гормона, переходящего в зрелую форму при ограниченном протеолизе. 
К лечению диабета приложена также технология инкапсулирования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года. 
Компания Integrated Genetics приступила к выпуску фолли-кулостимулирующего и лютенизирующего гормонов. Эти пептиды составлены из двух субъединиц. На повестке дня вопрос о промышленном синтезе олигопептидных гормонов нервной системы — энкефалинов, построенных из 5 аминокислотных остатков, и эндорфинов, аналогов морфина. При рациональном применении эти пептиды снимают болевые ощущения, создают хорошее настроение, повышают работоспособность, концентрируют внимание, улучшают память, приводят в порядок режим сна и бодрствования. Примером успешного применения методов генетической инженерии может служить синтез р-эндорфина по технологии гибридных белков, описанной выше для другого пептидного гормона, соматостатина.[7] 
Способы получения инсулина человека: 
Исторически первым способом получения инсулина для терапевтических целей является выделение аналогов этого гормона из природных источников (островков поджелудочной железы крупного рогатого скота и свиней). В 20-х годах прошлого века было установлено, что бычий и свиной инсулины (которые являются наиболее близкими к инсулину человека по своему строению и аминокислотной последовательности) проявляют в организме человека активность, сравнимую с инсулином человека. После этого долгое время для лечения пациентов, страдающих сахарным диабетом I типа, применяли инсулины быка или свиньи. Однако через некоторое время было показано, что в ряде случаев в организме человека начинают накапливаться антитела к бычьему и свиному инсулинам, тем самым сводя на нет их действие.  
С другой стороны, одним из преимуществ этого метода получения инсулина является доступность исходного сырья (бычий и свиной инсулин можно легко получать в больших количествах), что и сыграло решающую роль при разработке первого способа получения инсулина человека. Этот метод получил название полусинтетического. [9] 
При этом способе получения инсулина человека в качестве исходного сырья использовали свиной инсулин. От очищенного свиного инсулина отщепляли С-концевой октапептид В-цепи, после чего синтезировали С-концевой октапептид человеческого инсулина. Затем его химически присоединяли, снимали защитные группы и очищали полученный инсулин. При тестировании данного метода получения инсулина было показана полная идентичность полученного гормона инсулину человека. Основной недостаток данного способа заключается в высокой стоимости получающегося инсулина (даже сейчас химический синтез октапептида - дорогое удовольствие, тем более в промышленном масштабе).  
В настоящее время инсулин человека, в основном, получают двумя способами:модификацией свиного инсулина синтетико-ферментативным методом и генно-инженерным способом .  
В первом случае метод основан на том, что свиной инсулин отличается от инсулина человека одной заменой на С-конце В-цепи Ala30Thr.

Замену аланина на треонин  осуществляют путем катализируемого  ферментом отщепления аланина и  присоединение вместо него защищенного  по карбоксильной группе остатка  треонина, присутствующего в реакционной  смеси в большом избытке. После  отщепления защитной О-трет-бутильной  группы получают инсулин человека.  
Инсулин оказался первым белком, полученным для коммерческих целей с использованием технологии рекомбинантной ДНК. Существует два основных подхода для получения генно-инженерного инсулина человека. В первом случае осуществляют раздельное (разные штаммы-продуценты) получение обеих цепей с последующим фолдингом молекулы (образование дисульфидных мостиков) и разделением изоформ. Во втором - получение в виде предшественника (проинсулина) с последующим ферментативным расщеплением трипсином и карбоксипептидазой В до активной формы гормона. Наиболее предпочтительным в настоящее время является получение инсулина в виде предшественника, обеспечивающее правильность замыкания дисульфидных мостиков (в случае раздельного получения цепей проводят последовательные циклы денатурации, разделения изоформ и ренатурации). [9] 
При обоих подходах возможно как индивидуальное получение исходных компонентов (А- и В-цепи или проинсулин), так и в составе гибридных белков. Помимо А- и В-цепи или проинсулина, в составе гибридных белков могут присутствовать:  
1) белок носитель - обеспечивающий транспортировку гибридного белка в периплазматическое пространство клетки или культуральную среду;  
2) аффинный компонент - существенно облегчающий выделение гибридного белка.  
При этом оба эти компонента могут одновременно присутствовать в составе гибридного белка. Кроме этого, при создании гибридных белков может использоваться принцип мультимерности, (то есть, в гибридном белке присутствует несколько копий целевого полипептида), позволяющий существенно повысить выход целевого продукта. [10] 
Экспрессия проинсулина в клетках Е.coli.. 
В работе использовали штамм JM 109 N1864 со встроенной в плазмиду нуклеотидной последовательностью, экспрессирующей гибридный белок, который состоит из линейного проинсулина и присоединенного к его N-концу через остаток метионина фрагмента белка А Staphylococcus aureus. Культивирование насыщенной биомассы клеток рекомбинантного штамма обеспечивает начало производства гибридного белка, выделение и последовательная трансформация которого in tube приводят к инсулину. Другая группа исследователей получала в бактериальной системе экспрессии слитой рекомбинантный белок, состоящий из проинсулина человека и присоединенного к нему через остаток метионина полигистидинового "хвоста". Его выделяли, используя хелатную хроматографию на колонках с Ni-агарозой из телец включения и расщепляли бромцианом. Авторы определили, что выделенный белок является S-сульфонированным. Картирование и масс-спектрометрический анализ полученного проинсулина, очищенного ионнообменной хроматографией на анионите и ОФ (обращеннофазовой) ВЭЖХ (высокоэффективной жидкостной хроматографией), показали наличие дисульфидных мостиков, соответствующих дисульфидным мостикам нативного проинсулина человека. Также сообщается о разработке нового, усовершенствованного способа получения инсулина человека методами генной инженерии в прокариотических клетках.

Информация о работе Получение лекарственных препаратов методами биотехнологии