Получение лекарственных препаратов методами биотехнологии

Автор: Пользователь скрыл имя, 02 Декабря 2012 в 16:01, реферат

Описание работы

Цель данной работы – рассмотреть основные направления и использование новых биологических технологий в производстве лекарственных препаратов.

Содержание

ВВЕДЕНИЕ
1. Слагаемые биотехнологического процесса производства лекарственных средств
2. Получение антибиотиков
3. Получение гормонов
4. Получение интерферонов, интерлейкинов, факторов крови
5. Моноклональные антитела и ДНК- или РНК- пробы
6. Рекомбинантные вакцины и вакцины-антигены
7. Ферменты медицинского назначения
ЗАКЛЮЧЕНИЕ
Список литературы

Работа содержит 1 файл

получение лп.docx

— 72.65 Кб (Скачать)

Содержание

ВВЕДЕНИЕ

1. Слагаемые биотехнологического процесса производства лекарственных средств 

2. Получение  антибиотиков 
3. Получение гормонов

4. Получение интерферонов, интерлейкинов, факторов крови 

5. Моноклональные  антитела и ДНК- или РНК-  пробы

6. Рекомбинантные  вакцины и вакцины-антигены 
 7. Ферменты медицинского назначения 
 ЗАКЛЮЧЕНИЕ

Список литературы

 

ВВЕДЕНИЕ 
Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления процессов различного назначения. Биологические агенты в данном случае - микроорганизмы, растительные и животные клетки, клеточные компоненты, а также биологические макромолекулы (белки, чаще всего ферменты). В целом, биотехнология представляет собой систему приемов, позволяющих получать промышленным способом ценные продукты за счет использования процессов жизнедеятельности живых организмов.[1] 
Еще в середине прошлого века стали внедряться новые подходы в биотехнологии, в связи с тем, что совершенствование методов микробиологии и химического мутагенеза дало возможность получать высокопродуктивные штаммы. Было обнаружено много полезных для человека микробиологических продуктов, и, прежде всего — различные лекарственные соединения. 
С 80-х гг. активно начались работы по сиквенированию геномов, в середине 90-х гг. был разработан проект генома человека и животных. Это стимулировало рост инноваций для биотехнологических разработок лекарств и другие крупнейшие прорывы в области геномики микроорганизмов. Возникла новая стадия развития биотехнологии — суперсовременная биотехнология, ориентированная преимущественно на медицину: более 70% всех исследований и практических результатов связано с получением фармацевтических и биомедицинских препаратов. 
Чаще всего биотехнологии применяются в медицине, пищевой промышленности, а также для решения проблем в области энергетики, охраны окружающей среды, и в научных исследованиях.[3] 
В медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Антибиотики — самый большой класс фармацевтических соединений, получение которых осуществляется с помощью микробиологического синтеза. Созданы генно-инженерные штаммы кишечной палочки, дрожжей, культивируемых клеток млекопитающих и насекомых, используемые для получения ростового гормона, инсулина и интерферона человека, различных ферментов и противовирусных вакцин. Изменяя нуклеотидную последовательность в генах, кодирующих соответствующие белки, оптимизируют структуру ферментов, гормонов и антигенов (так называемая белковая инженерия).

Важнейшим открытием явилась  разработанная в 1975 Г. Келером и С. Мильштейномтехника использования гибридом для получения моноклональных антител желаемой специфичности. Моноклинальные антитела используют как уникальные реагенты, для диагностики и лечения различных заболеваний.[5] 
Цель данной работы – рассмотреть основные направления и использование новых биологических технологий в производстве лекарственных препаратов. 

1. СЛАГАЕМЫЕ БИОТЕХНОЛОГИЧЕСКОГО  ПРОЦЕССА ПРОИЗВОДСТВА ЛЕКАРСТВЕННЫХ  СРЕДСТВ 
Иерархическая структура биотехнологического производства. Первая ступень построения. Подсистемы типа: биообъект - биореакторы, биомасса - сепараторы, экстракторы и т.п. 
Вторая ступень построения. Объединение подсистем в функционально единую цепь (участок, цех). Технологические основы создания блочно-модульных типовых решений. Третья ступень построения: последовательность блоков и модулей функциональных участков. Опытно-промышленная установка, предприятие законченного цикла. Основные и вспомогательные (общеинженерные) подсистемы.[3] 
Схема последовательно реализуемых стадий превращения исходного сырья в лекарственное средство. Оптимизация биообъекта, процессов и аппаратов как единое целое в биотехнологическом производстве. 
Подготовительные операции при использовании в производстве биообъектов микроуровня. Многоэтапность подготовки посевного материала. Инокуляторы. Кинетические кривые роста микроорганизмов в закрытых системах. Связь скорости изменения количества микроорганизмов в экспоненциальной фазе роста с концентрацией клеток в системе.[4] 
Комплексные и синтетические питательные среды. Их компоненты. Концентрация отдельного расходуемого компонента питательной среды и скорость размножения биообъекта в техногенной нише. Уравнение Моно. 
Методы стерилизации питательных сред. Критерий Дейндорфера- , Хэмфри. Сохранение биологической полноценности сред при их стерилизации.Стерилизация ферментационного оборудования. "Слабые точки" внутри стерилизуемых емкостей. Проблемы герметизации оборудования и коммуникаций.[4] 
Очистка и стерилизация технологического воздуха. Схема подготовки потока воздуха, подаваемого в ферментатор. Предварительная очистка. Стерилизующая фильтрация. Предел размера пропускаемых частиц. Эффективность работы фильтров. Коэффициент проскока. 
Критерии подбора ферментаторов при реализации конкретных целей. Классификация биосинтеза по технологическим параметрам. Принципы организации материальных потоков: периодический, полупериодический, отьемно-доливной, непрерывный. Глубинная ферментация. Массообмен. Поверхностная ферментация. 
Требования к ферментационному процессу в зависимости от физиологического значения целевых продуктов для продуцента - первичные метаболиты, вторичные метаболиты, высокомолекулярные вещества. Биомасса как целевой продукт. Требования к ферментационному процессу при использовании рекомбинантных штаммов, образующих чужеродные для биообъекта целевые продукты.[6] 
Выделение, концентрирование и очистка биотехнологических продуктов. Специфические особенности первых стадий. Седиментация биомассы.

Уравнение скорости осаждения. Коагулянты. Флокулянты. Центрифугирование. Выделение из культуральной жидкости клеток высших растений, микроорганизмов. Отделение целевых продуктов, превращенных в твердую фазу. Сепарирование  эмульсий. Фильтрование. Предварительная  обработка культуральной жидкости для более полного разделения фаз. Кислотная коагуляция. Тепловая коагуляция. Внесение электролитов. 
Методы извлечения внутриклеточных продуктов. Разрушение клеточной стенки биообъектов и экстрагирование целевых продуктов. 
Сорбционная и ионообменная хроматография. Аффинная хроматография применительно к выделению ферментов. Мембранная технология. Классификация методов мембранного разделения. Общность методов очистки продуктов биосинтеза и оргсинтеза на конечных стадиях их получения (из концентратов). Сушка.[6] 
Стандартизация лекарственных средств, получаемых методами биотехнологии. Фасовка. 

2. Получение антибиотиков 
Антибиотики — это специфические продукты жизнедеятельности, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов и к злокачественным опухолям, избирательно задерживающих их рост или полностью подавляющих развитие (Н. С. Егоров, 1979). Далеко не все из этих соединений, число которых приближается к 5000, допущены для применения в медицине. К важнейшим антибиотикам терапевтического назначения принадлежат следующие их классы (табл. 1).[5] 
Приведенные классы антибиотиков не исчерпывают их многообразия, список их пополняется с каждым годом. Причины неослабевающего внимания к поиску новых антибиотиков, как видно из табл. 10, связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики. Основные пути поиска включают: 
1.Испытание новых продуцентов. Так, с начала 80-х годов исследуют миксобактерии, продуцирующие большое количество антимикробных агентов. 
2.   Химическая модификация антибиотиков. Противомикроб-ные макролиды токсичны для человека. Например, гептаен амфо-терицин В, используемый по жизненным показаниям при тяжелых микозах, вызывает необратимые поражения почек. Получены метиловые эфиры амфотерицина, менее токсичные и сохраняющие противогрибковую активность. При модификации пенициллинов и цефалоспоринов используют иммобилизованные ферменты. 
3.  Мутасинтез. Применяют мутантные штаммы, у которых блокирован синтез отдельных фрагментов молекулы антибиотика. В среду культивирования вносят аналоги этих фрагментов. Микроорганизм использует эти аналоги для биосинтеза, в результате чего получают модифицированный антибиотик.  
4.  Клеточная инженерия. Получают гибридные антибиотики, например, с новыми комбинациями агликона и Сахаров. 
5.  Генетическая инженерия — введение в геном микроорганизма информации о ферменте, необходимом для модификации продуцируемого антибиотика, например его метилирования при помощи метилаз.[6] 
Важной задачей является повышение эффективности биосинтеза известных антибиотиков. Значительных результатов удалось добиться за десятилетия селекции штаммов-продуцентов с применением индуцированного мутагенеза и ступенчатого отбора. Например, продуктивность штаммов Penicillium по синтезу пенициллина увеличена в 300—350 раз. Определенные перспективы открываются в связи с возможностью клонирования генов «узких мест» биосинтеза антибиотика или в случае, если все биосинтетические ферменты кодируются единым опероном.[7] 
Многообещающим подходом служит инкапсулирование антибиотиков, в частности их включение в лигюсомы, что позволяет прицельно доставлять препарат только к определенным органам и тканям, повышает его эффективность и снижает побочное действие. Этот подход применим и для других лекарственных препаратов. Например, кала-азар, болезнь, вызываемая лейгшма-нией, поддается лечению препаратами сурьмы. Однако лечебная доза этих препаратов токсична для человека. В составе липосом препараты сурьмы избирательно доставляются к органам, пораженным лейшманией, — селезенке и печени.

 

Таблица 1- Важнейшие классы антибиотиков терапевтического назначения  (по И  Г..  Егорову,  1979; Д.Ланчини, Ф   Паренти,  1985)

Класс

Типичные антибиотики

Продуценты

На  кого действует

 
Механизм  дейст-вия 

Трудности терапевтического применения 

 
b-Лактамные

 
Пенициллины, цефалоспори-ны

 
Грибы   родов  

Реnicillium,  

Cephalosporum 

 
Грамположи-тельные и грамотрица-тельные  бак-терии

 
Нарушение синтеза клеточной стенки

 
Аллергические   реак-ции

 
Аминогли-козидные 

 
Стрептомицин, гентамицин, 

канамицин, тобрамицин, амикацин 

 
Актиномицеты родаStreptomyces, бактерии родов 

Micromonospora. Bacillus

 
В  основном   грамотрица-тельные   бактерии

 
Необратимое   по-давление   синтеза белка 

 
Токсическое действие на слуховой нерв и почки

 
Тетрацик-лины 

 
Одноименные  антибиотики 

 
Актиномицеты родаStreptomyces 

 
Грамположи-тельные   и грамотрица-тельные бактерии, риккетсии, хламидии, простейшие

 
Обратимое подавление синтеза белка 

 
Распространение устойчивых штаммов 

 
Макролиды 

 
Антибактери-альные: эритромицин Противогриб-ковые и антипротозой-ные: полиены

 
Актиномицеты родаStreptomycesТо же 

 
Грамположи-тельные бактерии Грибы,   неко-торые простейшие

 
То же 
 
Нарушение  плазматической   мембраны

 
Токсичность 

 
Полипеп-тидные и   депси-пептидные

 
Полимиксины, грамицидины, бацитрацины 

 
Различные микроорганизмы 

 
В  основном   грамотрица-тельные   бактерии

 
Механизм   действия различен 

 
Высокая   токсичность


 
  
Вместо антибиотика в организм человека может вводиться его  продуцент, антагонист возбудителя  заболевания. Этот подход берет начало с работ И. И.Мечникова о подавлении гнилостной микрофлоры в толстом  кишечнике человека посредством  молочнокислых бактерий. Важную роль в возникновении кариеса зубов, по-видимому, играет обитающая во рту бактерия Streptococcusmutans, которая выделяет кислоты, разрушающие зубную эмаль и дентин. Получен мутант Strept. mutans, который при введении в ротовую полость почти не образует коррозивных кислот, вытесняет дикий патогенный штамм и выделяет летальный для него белковый продукт.[10] 
3. Получение гормонов 
Биотехнология предоставляет медицине новые пути получения ценных гормональных препаратов. Особенно большие сдвиги произошли в последние годы в направлении синтеза пептидных гормонов.[13] 
Получение гормона роста в биотехнологии 
Раньше гормоны получали из органов и тканей животных и человека (крови доноров, удаленных при операциях органов, трупного материала). Требовалось много материала для получения небольшого количества продукта. Так, человеческий гормон роста (соматотропин) получали из гипофиза человека, каждый гипофиз содержит его не более 4 мг. В то же время для лечения одного ребенка, страдающего карликовостью, требуется около 7 мг соматотропина в неделю; курс лечения должен продолжаться несколько лет. С применением генноинже-нерного штамма Е. coliв настоящее время получают до 100 мг гормона роста на1 л среды культивирования. Открываются перспективы борьбы не только с карликовостью, но и с низкорослостью — более слабой степенью дефицита соматотропина. Соматотропин способствует заживлению ран и ожогов, наряду с кальцитонином (гормоном щитовидной железы) регулирует обмен Са2+ в костной ткани.[14] 

Гормон роста или соматотропин принадлежит к семейству гипофизарных белковых гормонов. Этот регуляторный белок, имеющий молекулярную массу  около 22000 дальтон, выполняет в организме  важную функцию стимулятора соматического  роста.  
Впервые гормон был выделен и очищен  в 1963 году из гипофиза, полученного из трупного материала. Гормон видеоспецифичен и является единственным средством лечения детей, страдающих от его недостатка [2]. 
Действие соматотропного гормона на костный рост опосредовано через соматомедины - инсулиноподобные ростовые факторы полипептидной природы. Главным источником соматомединов в циркуляции является печень, где их синтез стимулируется соматотропным гормоном. В регуляции гепатической продукции соматомединов участвуют и другие гормоны - инсулин, пролактин, тиреоидные гормоны. Помимо печени, соматомедины синтезируются в других клетках и тканях, в частности в хрящевой ткани, где они могут действовать локально.[3] 
Химический синтез гормона сложен и дорог. Именно поэтому соматотропин оказался одним из первых продуктов, полученных методами генной инженерии. Фирмой Genentech Inc.(CШA) был сконструирован "квазисинтетический" ген соматотропина, построенный из синтетического фрагмента ДНК, кодирующего 23 аминокислоты N-концевой части гормона и фрагмента к ДНК, несущего информацию об остальной части молекулы соматотропина. Введение его в плазмиду, содержащую бактериальный промотор (регуляторный элемент, контролирующий транскрипцию гена) и сигнал инициации трансляции, обеспечивало эффективную экспрессию гена и приводило к синтезу гормона роста. 
Соматотропины разной видовой принадлежности, обладая различиями в химической структуре, иногда довольно значительными, тем не менее проявляют четкую структурную гомологию. Все изученные соматотропины млекопитающих, в том числе человека, построены из одной полипептидной цепи, состоящей из 191 аминокислотного остатка. Они содержат по одному остатку триптофана и четыре остатка полуцистина. Два дисульфидных мостика (в соматотропине человека между остатками Цис54-Цис165 и ЦИС182-ЦИС189) формируют две петли полипептидной цепи - большую, включающую центральный участок аминокислотной последовательности, и малую на С-концевом участке.[4] 
Пространственная структура соматотропинов характеризуется высокой степенью упорядоченности. Высокое содержание в составе соматотропинов нелолярных аминокислот обуславливает их большую склонность к образованию в растворе димеров и более крупных агрегатов [5]. 
Отмечая в целом эволюционную консервативность соматотропина в ряду млекопитающих, которая сочетается с консервативностью его биологической функции, следует сказать, однако, что в этом ряду несколько особняком стоит соматотропин человека. Сохраняя схему строения, общую для других млекопитающих, гормон человека отличается аминокислотной последовательностью от изученных соматотропинов животных на 34-35%. Этим может объясняться неэффективность соматотропинов животного происхождения как стимуляторов роста при введении людям. 
Вместе с тем при сравнении аминокислотных последовательностей соматотропинов человека и различных животных во всех этих белках легко выявляются участки, почти идентичные по структуре.

Информация о работе Получение лекарственных препаратов методами биотехнологии