Культуры клеток высших растений

Автор: Пользователь скрыл имя, 11 Февраля 2013 в 23:27, доклад

Описание работы

Изучение биологии клетки, существующей вне организма, обуславливает ведущую роль клеточных культур в фундаментальных исследованиях по генетике и физиологии, молекулярной биологии и цитологии растений. Популяциям растительных клеток присущи специфические особенности: генетические, эпигенетические (зависящие от дифференцированной активности генов) и физиологические. При длительном культивировании гетерогенной по этим признакам популяции идет размножение клеток, фенотип и генотип которых соответствуют данным условиям выращивания, следовательно, популяция эволюционирует. Все это позволяет считать, что культуры клеток являются новой экспериментально созданной биологической системой, особенности которой пока мало изучены.

Работа содержит 1 файл

Культуры клеток высших растений.doc

— 157.00 Кб (Скачать)

Есть системы, не реагирующие  на гормональные обработки. Клетки этих тканей не способны к дифференциации, или, пролиферирующие in vitro, не проявляют  тотипотентности. Морфогенная способность клона зависит от генотипа. Имеет значение и орган, от которого взят первичный эксплант. Ткани одного и того же органа имеют разную способность к морфогенезу. Например, флоэмная ткань корня моркови дает начало корням, а ксилемная - формирует эмбриоиды.

Для понимания механизмов морфогенеза необходимо рассмотреть  комплекс морфофизиологических процессов, протекающих в каллусной ткани, так как эти процессы лежат  в основе того, что из каллуса  при определенных условиях выращивания дифференцируется растение. В процессе культивирования отмечено возникновение новых микротрубочек в клетке in vitro, изменение ее размеров, активности рибосом, состояния пластидных пигментов, запасающих веществ. Роль микротрубочек, микрофиламентов и других структур в клеточном взаимодействии пока не выяснена. Эти структурные образования появляются обычно при регенерации и каким-то образом причастны к клеточному делению, взаимодействию между клетками, структуро- и формообразованию. Изменяется также структура и активность аппарата Гольджи, который выполняет важную функцию при клеточном делении.

Появляются многоядерные клетки, отмечается полиплоидизация  в результате нарушения митоза. Характерное  несинхронное течение митотических циклов является одним из условий морфологической гетерогенности клеток ткани. Важно, что при выращивании in vitro наблюдается генетическая гетерогенность клеток, появление мутантов с отличительными особенностями органогенеза. В основе лежат изменения состояния хромосом в виде транслокаций, делеций, другие нарушения связаны с полиплоидизацией.

Клетка, введенная в  культуру, претерпевает последовательные изменения: переход к дедифференцированному  состоянию, эмбриональному росту и, благодаря способности каллуса  к вторичной дифференциации, формообразованию. Взаимодействие между клетками выступает как решающий фактор их дифференциации и специализации. Процесс дифференциации клеток обусловлен различной степенью репрессии и дерепрессии генетической информации.

Для индукции морфогенеза in vitro необходимо вызвать неоднородность в клеточных популяциях и тканях. Любые воздействия, приводящие к увеличению неоднородности в культуре клеток, в пространственном распределении гормонов, будут способствовать дифференциации клеток и формообразованию в каллусе. Доказательством этого могут также служить эксперименты, проведенные с каллусной тканью пшеницы и кукурузы в космических условиях. Эти эксперименты были описаны М. Карабаевым (1994).

В условиях космического полета можно выделить 2 принципиальных стадии клеточного ответа на экстремальные условия:

1. Эта стадия, или стадия  адаптации, продолжается 10 - 12 дней  и связана с адаптацией культуры  к стрессу. Она сопровождается  общим уменьшением жизнеспособности  клеток и потерей значительного  числа клеток. В этих условиях число жизнеспособных, стрессоустойчивых клеток постепенно возрастает.

2. Инициируется деление  и меняется распределение клеток  в популяции, уменьшается градиент  элементов питательной среды,  так же как и градиент продуктов  жизнедеятельности клеток. Независимо от продолжительности космического полета, развитие клеток и структур, ответственных за клеточную дифференциацию, эмбриогенез и регенерацию растений подавляется космическими условиями. Основная причина этого может быть связана со специфическим распределением клеток в клеточной популяции и слабостью межклеточных контактов под действием невесомости. Можно сделать вывод, что гравитация имеет большое значение для развития растений, так как условия Земли способствуют более тесному взаимодействию гетерогенных спорадично растущих клеточных структур, а это впоследствии влияет на индукцию клеточной дифференциации.

Генетические  механизмы, обуславливающие дифференцировку  клеток в культуре

В ассоциации клеток каллусной  ткани одни клетки занимают определенное положение и осуществляют посредством физико-химических контактов влияние на другие, чем определяется их структурно-функциональное состояние. Межклеточные взаимодействия осуществляются с помощью соответствующих донорно-акцепторных молекул цитоплазматической мембраны. Этими молекулами могут быть низкомолекулярные белки, комплексы углеводов с белками, фитогормоны, ингибиторы, полярные соединения и другие. Но во всех случаях на основе нуклеиново-белкового, белково-углеводного и иного типа узнавания они будут способствовать слипанию или отталкиванию клеток, будут выступать как эффекторы или апорепрессоры. В клетке реципиента с помощью специальных рецепторов эти молекулы будут связываться и изменять в эпигенезе реакцию генетической информации. Таким образом, в основе дифференциации клетки лежат процессы репрограммирования, репрессии, дерепрессии генетической информации. Это приводит к образованию специализированных клеток, которые становятся способными к взаимодействию, ассоциации, образованию геометрических форм, к органо- и морфогенезу.

Важнейшим условием морфогенеза  является адгезия клеток, в результате которой образуется ткань и орган. Поверхностные рецепторы, а также  различные структуры типа микротрубочек  обуславливают узнавание, сближение, слипание клеток в процессе дифференциации, ткане- и формообразования. Вещества, активные в процессах структуро- и формообразования, синтезируются под контролем ядра при поступлении сигналов из цитоплазмы клетки, а также экзогенных импульсов, эффекторов. При этом связующим звеном между генетической информацией, ее реализацией и эффектором выступают аллостерические белки, которые собирают, накапливают внешнюю информацию и преобразуют ее, в результате чего изменяют свою конформацию и вступают во взаимодействие с опероном.

Генетическая обусловленность процессов морфогенеза отражается в изменении синтеза и-РНК, белков, активных ферментов, то есть в комплексе скоординированных во времени и пространстве реакций, обуславливающих дифференциацию активности генов. Появление некоторых белков свидетельствует об их участии в морфогенезе и запуске морфогенетических реакций. Установлен специфический фактор пептидной природы, стимулирующий морфогенез. Изучая генетический контроль каллусообразования и органогенеза, ученые предположили, что интенсивность образования каллуса находится под генетическим контролем.

О генетической обусловленности  признака регенерации в условиях in vitro свидетельствуют следующие  факты:

1. Отсутствие определенных  плеч хромосом (например, в клетках  Triticum timopheevii при длительном культивировании теряются плечи хромосом генома At) может приводить к снижению выхода регенерантов.

2. С помощью гибридизации  можно повысить интенсивность  регенерации в каллусной ткани.

3. Использование разных  по составу питательных сред  для регенерации способствует разному уровню экспрессии генов, которые определяют этот признак.

4. В основе генетического  контроля таких признаков, как  частота каллусообразования, частота  образования морфогенных каллусов  и количество зон регенерации  для озимой пшеницы основными являются сверхдоминирование, неполное доминирование и эпистаз; для озимой твердой – эпистаз, неполное доминирование и сверхдоминирование; для яровой твердой – эпистаз.

Одни генетические системы  контроля для всех признаков проявляются  стабильно (эпистаз), а другие (сверхдоминирование) – значительно изменяются в зависимости от признаков и генотипов. Но следует отметить, что каллусогенез и регенерация растений не являются сопряженными процессами, вероятно, они контролируются различными генетическими механизмами. Общей закономерностью для культивируемых тканей остается возрастание цитогенетической вариабельности в процессе культивирования. С этим коррелирует в большинстве случаев потеря морфогенного потенциала. Способность к морфогенезу зависит и от состояния ядра. Как правило, регенерирующие в культуре тканей растения являются диплоидными, хотя ткани, из которых они произошли, имеют разный уровень плоидности.

Суспензионные культуры

Суспензионные культуры - отдельные клетки или  группы клеток, выращиваемые во взвешенном состоянии в жидкой среде. Представляют собой относительно гомогенную популяцию клеток, которую легко подвергнуть воздействию химических веществ.

Суспензионные культуры широко используются в качестве модельных систем для изучения путей вторичного метаболизма, индукции ферментов и экспрессии генов, деградации чужеродных соединений, цитологических исследований и др.

Признаком "хорошей" линии служит способность клеток к перестройке метаболизма и  и высокая скорость размножения  в конкретных условиях культивирования. Морфологические характеристики такой линии:

  • высокая степень дезагрегации (5-10 клеток в группе);
  • морфологическая выравненность клеток (небольшие размеры, сферическая или овальная форма, плотная цитоплазма);
  • отсутствие трахеидоподобных элементов.

Клеточную суспензию  получают, помещая каллусную ткань  в колбу с жидкой питательной  средой. Суспензия перемешивается в  колбе на качалке, имеющей скорость перемешивания 100 - 120 об/мин. При первом переносе на свежую среду удаляют  крупные кусочки исходного каллуса и крупные агрегаты, фильтруя через 1 - 2 слоя марли, нейлоновые сита, шприц с соответствующим отверстием. Для инициализации суспензионной культуры необходимо 2 - 3 г свежей массы каллусной культуры на 60 - 100 мл жидкой питательной среды. Однако для каждой линии культуры клеток существует минимальный объем инокулята, при меньшем размере которого культура не растет.

Рост суспензионных  культур клеток можно оценивать  по одному или нескольким следующим  параметрам:

1. Объем осажденных клеток (ООК). Переносят небольшой объем суспензионной культуры в мерную пробирку объемом 15 мл, лучше всего коническую. Центрифугируют 5 минут при 200 g. ООК - величина, которую составляет объем осадка от объема суспензии, обычно в %.

2. Число клеток. Подсчитывается в камере Фукса-Розенталя.

3. Сырая и сухая масса. Суспензия клеток фильтруется через смоченный и взвешенный фильтр, вложенный в воронку Бюхнера под слабым вакуумом. Клетки промывают дистиллированной водой, оттягивают воду под вакуумом и взвешивают снова вместе с фильтром. Сухая масса – определяется аналогично, но взвешивается сухой фильтр, а клетки сушат вместе с фильтром в термостате при 60оС до постоянной массы.

4. Содержание белка. Для определения белка клетки собирают на фильтре из стекловолокна, дважды промывают кипящим раствором 70% этанола, сушат ацетоном, гидролизуют 1М NaOH при температуре 85оС полтора часа. Затем фильтруют и определяют белок по Лоури.

5. Проводимость среды. Определяют с помощью кондуктометра. Как правило, она обратно пропорциональна свежей массе клеток.

6. Жизнеспособность клеток. Оценивают, изучая движение цитоплазмы под микроскопом, а также с помощью прижизненных красителей (флюоресцеиндиацетат, соли тетразолия, синий Эванса). Перед использованием подбирают рН инкубационного буфера, концентрацию красителя, время инкубации, строят калибровочные кривые для смеси живых и убитых клеток.

По полученным данным строят ростовые кривые, которые  имеют S-образную форму и состоят  из нескольких участков: 1- латентная, или  лаг-фаза, где видимый рост не наблюдается ни по одному из критериев; 2 - экспоненциальная, рост с ускорением; 3 - линейная, где скорость роста постоянна; 4 - фаза замедленного роста; 5 - стационарная фаза; 6 - фаза деградации клеток (рис. 11).

 

Реальная ростовая кривая может несколько отличаться от модельной. На форму ростовых кривых влияют и генетическая характеристика популяции (вид растения), и количество инокулята, и условия выращивания (состав среды, начальное значение рН, состав газовой фазы, скорость перемешивания).

Необходимо  отметить, что ростовые кривые для  разных критериев не идентичны. Дисбаланс  между скоростями клеточного размножения (число клеток), синтеза структурных  элементов клетки (сухая масса) и  увеличения объема и содержания вакуолей (сырая масса) отражает специфику онтогенеза высшего растения.

Для глубинного культивирования растительных клеток применимы способы, разработанные  в микробиологии. Различают два  вида систем культивирования: открытую и закрытую.

Для закрытой системы  характерен периодический режим выращивания. Клеточная масса (инокулят) помещается в определенный объем среды. Система закрыта по всем параметрам, кроме газов, до конца выращивания. Периодически подается свежая питательная среда, а старая удаляется в том же объеме. Клетки остаются в системе в течение всего цикла выращивания.

Открытые (проточные) культуры характеризуются поступлением свежей питательной среды, при котором  отбирается не только старая питательная  среда, но и часть урожая клеточной  массы.

Наиболее изучено  и распространено закрытое глубинное культивирование. Для аэрации и перешивания используют различную аппаратуру: роллеры, качалки, магнитные мешалки и т.д. Очень большое значение для роста и биосинтеза клеток in vitro имеют технические характеристики систем культивирования. При масштабировании от небольших по объему культур в колбах до больших многолитровых ферментеров меняются многие параметры культивирования, в частности аэрация и перемешиваемость.

Для культивирования  суспензий в производственных масштабах  применяется аппаратура, разработанная для микробиологической промышленности, однако исследования последних лет показали, что растительные клетки в силу своих специфических особенностей требуют особых сосудов для культивирования. Клетки растений в десятки, сотни раз крупнее клеток бактерий и грибов, кроме того, их размеры меняются в процессе онтогенеза. Если в начале экспоненциальной фазы роста они мелкие и плотные, то в стационарной фазе роста они сильно увеличиваются в размерах и вакуолизируются. Чем крупнее становится клетка, тем больше возрастает опасность ее механического повреждения в процессе перемешивания. В то же время клетки растений, крупные и тяжелые, требуют эффективного перемешивания. Оседание их приводит к появлению «мертвых» зон в сосудах, в которых происходит быстрое накопление и старение клеток. Для культуры клеток женьшеня отрицательное влияние механического стресса при выращивании в ферментере с турбинными мешалками сказывалось на жизнеспособности клеток уже при скоростях мешалок свыше 100—350 об/мин, это отрицательно влияло на синтез ими антрахинонов. Устойчивость штамма к механическому стрессу является важным требованием к культуре и трудной задачей для исследователей.

Информация о работе Культуры клеток высших растений