Восстановление деталей обработкой под ремонтный размер

Автор: Пользователь скрыл имя, 14 Марта 2012 в 14:16, курс лекций

Описание работы

Около 85% деталей при восстановлении имеют износ не более 0,3 мм.
От 40 до 55% деталей можно восстановить.
Затраты на материалы при изготовлении составляют 38%, при восстановлении 6% от общей стоимости.
Количество операций при восстановлении в 5…8 раз меньше, чем при изготовлении.

Работа содержит 1 файл

Конспект по дисциплине Технология производства и ремонта автомобилей.doc

— 676.50 Кб (Скачать)

Восстановление размеров изношенных поверхностей происходит перемещением части материала.

Осадка – направление действия внешней силы перпендикулярно к направлению деформации. Применяют для восстановления наружного диаметра сплошных деталей и внутреннего диаметра полых деталей.

Осадка пальца

Усилие необходимое для осадки

GT – предел текучести при температуре осадки;

d – диаметр детали до осадки;

h – высота детали до осадки;

F – площадь поперечного сечения до осадки.

Осадка втулки

Уменьшение длины втулки 8…15% от номинального.

Раздача – увеличение наружных размеров полых деталей в результате увеличения их внутренних размеров.

Направление прикладываемой внешней силы совпадает с направлением деформации.

Давление, необходимое для раздачи

D – наружный диаметр;

d – внутренний диаметр.

Раздача втулки

Восстанавливают шипы крестовин карданного вала, поршневые пальцы.

Инструмент для раздачи: прошивки, дорны, шарики.

Производят в холодном и горячем состоянии.

При холодной раздаче детали имеющие химико-термическую обработку

Но это не дает увеличения длины шипов крестовины.

Поэтому применяют раздачу с локальным нагревом в результате действия сил трения.

Крестовина карданного вала.

Диаметр дорна, необходимый для раздачи шипа

- расчетный диаметр шипа крестовины после раздачи;

D0 – наружный изношенный диаметр шипа крестовины перед раздачей.

Шип нагревается при трении до 1000º С (дорн) и в результате осевой подачи раздает шип крестовины.

Линейные размеры шипа удлиняются на 0,3…0,5 мм.

d0 – диаметр исходного смазочного отверстия до раздачи.

k – коэффициент, учитывающий пластическое течение металла по смазочному каналу в процессе раздачи.

DН – диаметр номинальный.

Гидротермическая раздача.

Изношенный поршневой палец нагревают ТВЧ до 1110 К, затем быстро охлаждают, пропуская поток воды через внутреннюю полость. Происходит увеличение наружного диаметра от 0,1 до 0,3 мм.

Степень раздачи зависит от коэффициента относительной толщины стенки детали

              (0,3…0,5)

Деформация наружного диаметра

d – коэффициент теплового расширения детали

∆Т – разность температур между наружной и охлажденной внутренней поверхностью деталей

γ – коэффициент остаточных деформаций (0…1).

Электрогидравлическая раздача

Применяют для восстановления поршневых пальцев карбюраторного двигателя, у которых значения β невелики.

Схема электрогидравлической раздачи

Поршневой палец устанавливают в разовый полиэтиленовый патрон для направления электрического разряда по оси пальца исключая пробой на стенке пальца.

Для эффективности устанавливают специальный проводник – проволоку (Al диаметр 0,7 мм), в полость пальца подают рабочую жидкость – техническую воду.

Принцип работы: высоковольтный импульс от конденсаторной батареи проходит через проводник при этом в результате электрогидравлического взрыва возникает ударная волна, которая раздает поршневой палец.

Используемое напряжение 37 кВ.

Емкость конденсатора 6 мкФ.

Деформация пальца 0,15 мм для стали 15Х; 0,2 мм для стали 45.

Обжатие. Для восстановления внутренних размеров полых деталей в результате уменьшения наружных размеров.

Направление силы совпадает с направлением деформации.

Свободное обжатие втулки

 

Обжатие втулки в матрице

Вдавливание.

При вдавливании происходит осадка и раздача.

Восстановление шлицев вдавливанием

С – коэффициент, зависящий от угла 2γ.

Вдавливание производят инструментом клинообразной формы, материал выдавливается из средней части шлица в сторону изношенных боковых поверхностей. Увеличение до 1 мм на каждую сторону, инструмент перемещают вдоль шлица.

Термопластическое обжатие гильз цилиндров.

Гильзы помещают в водоохлаждаемую матрицу и нагревают до 880º С. Свободному расширению гильзы препятствуют стенки матрицы. При свободном охлаждении гильзы уменьшаются в осевом и радиальном направлении 0,75…1 мм.

Накатка: производят зубчатыми роликами или дисками для деталей с нагрузкой не более 7 МПа. Износостойкость при этом снижается на 20…25%.

При накатке образуется рифленая поверхность, что приводит к снижению площади опорной поверхности детали.

При накатке наружный или внутренний диаметр соответственно увеличивается или уменьшается в результате вытеснения металла из восстанавливаемой поверхности.

Вопрос 3. Восстановление геометрической формы детали.

Восстановление геометрических форм проводят правкой:

- статическим изгибом;

- ударом;

- термической правкой.

При статическом изгибе усталостная прочность снижается на 15…40%, стрела обратного прогиба должна быть в 10…15 раз больше, чем до правки или используют двойной прогиб:

1ый – на такую величину, чтобы вал остался прогнутым в обратную сторону на такую же величину как до правки;

2ой – таким образом, чтобы он выровнялся.

Замечание. В процессе эксплуатации может вновь возникнуть исправленная деформация. Для предотвращения этого производят отпуск детали при температуре 400…450º С в течение 0,5…1 час.

Правка ударом (выравнивание плоскостей кузовных деталей).

Выполняют молотками от 100 гр. до 500 гр.

Преимущества:

- точность выправленной поверхности и устойчивое сохранение форм.

Замечание. При правке листа удары наносят не по выпуклым местам, а от края листа по направлению к выпуклости, при приближении к центру выпуклости удары наносят чаще и слабее. Если имеется несколько выпуклостей их сводят к одной, которую затем исправляют таким же методом.

Термическая правка.

Металл нагревают до 600…700º С в местах неровностей и при остывании под действием сил сжатия деталь выпрямляется.

Восстановление механических характеристик материала деталей.

Проводится для пружин, рессор, коленчатых валов, а также деталей после наплавки.

Наибольшее распространение получили: дробеструйная обработка, обкатка шариками или роликами.

При дробеструйной обработке пластическая деформация достигает 0,5…0,8 мм.

Используется чугунная или стальная дробь 0,8…2 мм, скорость дроби 30…90 м/сек.; время обработки 0,5…2 мин.

 

 

Тема: Восстановление деталей сваркой и наплавкой

1. Классификация способов сварки

2. Сварка и наплавка в среде активных газов

3. Сварка и наплавка под слоем флюса

4. Сварка чугунных изделий. Газовая наплавка

 

Вопрос 1. Классификация способов сварки

Различают три класса сварки в зависимости от используемой энергии.

1 класс. Термическая сварка

1) электродуговая (нагрев электрической дугой)

2) газовая (нагрев пламенем газа)

3) электрошлаковая (нагрев током, проходящим через расплавленный электропроводный шлак)

4) индукционная (нагрев переменным электромагнитным полем)

5) электронно-лучевая (используется энергия сфокусированного потока электронов в электромагнитном поле высокой напряженности)

6) лазерная (используется энергия светового потока)

2 класс. Термомеханический: используется тепловая энергия и давление.

1) контактная (сварка давлением при нагреве током контактирующих деталей)

2) диффузионная (диффузия атомов при длительном воздействии температуры и незначительной пластической деформации). Может быть между поршневым кольцом и гильзой цилиндра; материалом гайки и шпилькой коллектора.

3 класс. Механический – используется механическая энергия и давление.

1) холодная сварка (это сварка давлением при незначительной пластической деформации без нагрева).

2) сварка взрывом (сварка в результате вызванного взрывом соударения быстро движущихся частей).

3) Магнитоимпульсная (это сварка давлением с использованием силы электрохимического взаимодействия между вихревыми токами в соединяемых частях).

4) ультразвуковая (сварка давлением, соединение частей деталей посредством ведения механических колебаний высокой частоты).

5) сварка трением (сварка давлением, когда нагрев осуществляется трением вызываемым вращением друг относительно друга свариваемых частей).

 

Вопрос 2. Сварка и наплавка в среде активных газов

2.1 Электродуговая

Источник тепла – сварочная дуга, устойчивый электрический разряд в сильно ионизированной смеси газов и паров материала.

Температура дуги не равномерная: наиболее высокая – в центре газового столба – около 6000º С.

Различают: дуга прямого действия (между электродом и изделием); дуга косвенного действия (между двумя электродами, изделие не включено в цепь); трехфазная дуга (между двумя электродами, а также между каждым электродом и основным металлом.

При сварке постоянным током различают:

1) сварку при прямой полярности (положительный полюс на изделии, а отрицательный на электроде, положительный полюс разогревается сильнее);

2) сварку при обратной полярности (отрицательный полюс к изделию, а положительный к электроду. Применяется когда необходим меньший нагрев детали.

При сварке переменным током полярность тока многократно изменяется, в результате тепло распределяется равномерно. Эта сварка более экономична, чем постоянным током, расходуется от 3 до 4 кВт•ч на 1 кг расплавленного металла (для постоянного 6…8 кВт·ч).

Сварка в среде защитных газов.

В зону горения дуги под большим давлением подают газ, который вытесняет воздух из этой зоны и защищает сварочную ванну от кислорода и азота.

Активные газы (углекислый газ, азот); Инертные газы: аргон, гелий.

Сварка в среде углекислого газа.

Самый дешевый способ сварки углеродистых и низколегированных сталей.

Так как СО2 диссоциирует на СО + О2

2СО2 → 2СО + О2

необходимо уменьшить окислительный характер сварки. Для этого применяют электродную проволоку, в состав которой входят раскислители (Si: 0,6…1%; Mn: 1…2%).

Сварочные материалы: электродная проволока Св – 08ГС; углекислый газ СО2 в газообразном либо в твердом состоянии при температуре ниже -78,9º С.

Оборудование: наиболее распространен автомат А-547У, обеспечивает сварку металла от 0,8 до 4 мм, используется проволока диаметром 0,6…1,2 мм, скорость подачи 140…600 м/ч, номинальный сварочный ток 300 А.

Режимы сварки: сила сварочного тока; напряжение питания дуги; диаметр, вылет и скорость подачи электродной проволоки, скорость сварки, расход углекислого газа.

Аргонно-дуговая сварка.

Аргон обеспечивает более надежную защиту расплавленного металла от воздействия кислорода и азота, чем углекислый газ. Это позволяет восстанавливать детали из трудно свариваемых материалов (чаще всего из Al и его сплавов) трудность заключается в наличии плотной, механически прочной, тугоплавкой пленки, температура плавления которой около 2000º С, в то время как температура плавления алюминия - 660º С.

Сварочные материалы: вольфрамовые электроды, присадочные материалы и газ аргон.

Вольфрамовые электроды не должны касаться поверхности детали и иметь высокую механическую прочность.

Температура плавления этих электродов 3300º С. Изготавливают из порошка прессованием, спеканием и проковкой.

Марка электродов ВТ-15. В них присутствует добавка двуокиси тория до 2%.

Присадочный материал может быть проволока, пруток или полоса из того же материала, что и свариваемый металл.

Аргон получают из воздуха в специальных разделительных колонках. В зависимости от чистоты газа различают три сорта:

А – газ для сварки химически активных металлов и для алюминиевых сплавов плавящимся электродом.

Б – для сварки неплавящимся электродом сплавов алюминия, магния и др.

В – для нержавеющих сталей.

Сварку лучше производить в нижнем положении, так как аргон тяжелее воздуха.

Аргон поставляется в баллонах под давлением 15 МПа.

Оборудование: специальная установка УДГ-301. В ней используются горелки с водяным и естественным охлаждением.

Режимы и техника сварки: диаметр электрода; сила сварочного тока; расход аргона; напряжение выбирают в зависимости от толщины свариваемого металла.

Сварку выполняют наклонной горелкой углом вперед (70…80º).

Присадочная проволока подается под углом 10…30º.

Дуга возбуждается замыканием электрода и металла угольным стержнем или кратковременным разрядом высокой частоты. После окончания сварки дугу обрывают постепенно для заварки кратера растяжением дуги и при автоматической сварке плавным уменьшением силы тока.

 

Вопрос 3. Сварка и наплавка под слоем флюса.

Флюс обеспечивает защиту сварочной ванны от воздуха. Стабилизирует горение дуги. Обеспечивает раскисление, легирование и рафинирование расплавленного слоя.

Рафинирование: оболочка из флюса предохраняет металл от воздуха и замедляет процесс охлаждения, облегчает всплытие на поверхность шлаковых включений.

Флюс по ГОСТ 9087-81 (определение)

Флюс – неметаллический материал, расплав которого необходим для сварки и улучшения качества шва.

Классификация флюсов:

- по назначению:

1) общего назначения (для углеродистых и низголегированных сталей);

2) специального назначения (для легированных сталей)

- по способу изготовления:

1) плавленые

2) не плавленые

- по химическому составу:

1) оксидные (из окислов металла)

2) солевые (из фтористых и хлористых солей)

Наплавочная проволока делиться на три группы:

1) для наплавки деталей из углеродистых сталей Нп-30;

2) для легированной стали Нп-30Х5

3) для высоколегированной стали Нп-4Х13.

Кроме электродной проволоки могут использоваться сплошные или порошковые ленты толщиной 0,3…1 мм

Режимы наплавки:

1) сила сварочного тока

2) диаметр проволоки d

3) скорость наплавки

αн – коэффициент наплавки, г/А•ч;

М – масса 1 м металлонаплавки, г.

Информация о работе Восстановление деталей обработкой под ремонтный размер