Автор: Пользователь скрыл имя, 20 Февраля 2013 в 09:30, контрольная работа
Гидроочистка газойлей. Технологическая схема
Схема установки для гидрообессеривания тяжелых дистиллятов, таких, как вакуумные газойли [по лицензии фирмы ARCO Petroleum Products [14]. На данной установке высокотемпературная сепара¬ция фаз проводится непосредственно после реактора. Особенностью является также ориентированное расположение частиц катализатора в реакторе, что достигается проведением специальной операции при заполнении аппарата катализатором.
Исходное сырье, нагнетаемое насосом 3, смеши¬вается с водородсодержащим газом (свежим и очи¬щенным циркуляционным), подаваемым компрес¬сором 1. Полученная газосырьевая смесь нагревается последовательно в теплообменниках 6 и 12, затем в змеевиках трубчатой печи 2. В теплообменнике 6 греющей средой является смесь газов и паров, вы¬ходящих из высокотемпературного (горячего) сепа¬ратора 5, а в теплообменнике 12 — стабильный гидроочищенный газойль (целевой продукт уста¬новки).
Выходящая из реактора снизу газопродуктовая смесь разделяется в горячем сепараторе 5. Жидкость из сепаратора направляется далее через редукционный клапан 10 в отпарную колонну 11. Газопаровая смесь охлаждается в теплообменнике 6 и аппарате воздушного охлаждения 7; образовавшийся при этом углеводородный конденсат доохлаждается вместе с газами в водяном холодильнике 8 и затем, пройдя низкотемпературный сепаратор высокого давления 9, присоединяется к гидроочищенным высококипящим фракциям газойля, уходящим из сепаратора 5.
Гидрообессеренная продуктовая смесь продувается в отпарной колонне // водяным паром с целью удаления нижекипящих фракций (отгон) и достижения нормированной температуры вспышки.
Водородсодержащий газ по выходе из холодного сепаратора 9 очищается в секции очистки газа от сероводорода регенерируемым раствором этанол-амина. С помощью компрессора 1 очищенный газ возвращается как циркуляционный в линию смешения с сырьем. Предусмотрен вывод с установки части очищенного газа (отдув) через клапан 18. В нагнетательную линию компрессора / вводится свежий водородсодержащий газ.
После теплообменника 12 не полностью охлажденный гидрообессеренный газойль подается насосом 14 в теплообменные аппараты 17 (на схеме показан один) для использования избыточного тепла и охлаждения до требуемой температуры. Отпарная колонна 11 в данном случае является стабилизационной колонной и обслуживается конденсатором-холодильником 13. Одна часть легкой фракции (отгона), собирающейся в приемнике 16, насосом 15 подается как орошение в колонну 11, а другая — выводится с установки. Из приемника 16 сверху уходят газы стабилизации.
Материальные балансы для различных видов сырья приведены ниже. Материальный баланс гидроочистки вакуумного газойля арланской нефти на пилотной установке при следующих условиях: температура 380 °С, давление 5 МПа; объемная скорость подачи сырья 0,7 ч-1, отношение циркуляционный газ:
сырье равно 850 м/м3 [23]:
Взято, % (масс.) Вакуумный газойль Водород на реакции Водород избыток |
100,00 0,56 0,36 |
Итого |
100,92 |
Получено, % (масс.) Сероводород Аммиак Углеводородные газы Бензиновая фракция (к.к. 200 °С) Очищенный газойль |
3,23 0,07 0,76 3,47 92,64 |
Итого |
100,17 |
Потери при гидроочистке Потери при перегонке |
0,36 0,39 |
Итого |
100,92 |
Характеристики исходного газойля арланской нефти и очищенного газойля приведены ниже:
Показатели |
До очистки |
После очистки |
Плотность при 20 °С, кг/м3 Содержание, % (масс.) серы азота Коксуемость, % (масс.) Фракционный состав (разгонка по ГОСТ), °С н.к. 10 % 50 % 90 % к.к. Групповой состав, % (масс.) метано-нафтеновые ароматические углеводороды смолы |
917
3,20 0,11 0,22
203 349 411 479 508
37,2 59,5 3,3 |
881
0,17 0,06 0,08
230 341 386 452 488
54,0 45,0 1,0 |
Материальные
балансы процессов гидроочистки
и легкого гидрокрекинга
Показатели |
Гидроочистка [12], вакуумный газойль западно-сибирской нефти |
Легкий гидрокрекинг [14], вакуумный газойль ближне-восточной нефти |
Характеристика сырья | ||
Пределы кипения, °С Плотность при 15 °С, кг/м3 Содержание серы, % (масс.) |
328-540 - 1,7 |
340-560 912 2,7 |
Материальный баланс | ||
Взято, % (масс.) Сырьё Водород (100%-ный) на реакции |
100,00 0,75 |
100,00 1,60 |
Итого |
100,75 |
101,60 |
Получено, % (масс.) Жидкие продукты втом числе: Бензиновые фракции Керосиновые фракции 160-350 °С 180-340 °С Газойль Углеводородные газы Сероводород и аммиак |
97,40 1,00 (до 160°С)
12,10 - 84,30 (›350°С) 1,77 1,58* |
95,30 11,4 (до 180°С)
- 21,10** 62,80 (›340°С) 3,50*** 2,80 |
Итого |
100,75 |
101,60 |
* Из них 1,55 % (масс.) H2S. ** В том числе 1 % (масс.) фракции 180-230°С. *** До С4 включительно. |
Материальные балансы и качество гидроочищенных вакуумных газойлей из чекмагушской нефти в зависимости от объемной скорости (температура процесса 370°С, давление 5 МПа) [24]:
Показатели |
Вакуумный газойль |
Объемные скорости подачи сырья | ||
10,0 |
2,0 |
0,5 | ||
Характеристика сырья и гидроочищенных газойлей | ||||
Плотность при 20 °С, кг/м3 |
915 |
901 |
893 |
88 |
Фракционный состав, °С н.к. выкипает,%(об.) до 300°С до 400°С до 500°С |
330
- 40,5 89,0 |
200
- 47 92 |
197
4,0 47,5 84,5 |
200
4 52 94 |
Коксуемость по Конрадсону, % (масс.) |
0,33 |
0,19 |
0,11 |
0,1 |
Температура застывания, °С |
25 |
24 |
23 |
24 |
Содержание, % (масс.) серы азота никеля и ванадия (г/т) |
3,02 0,4 2,68 |
2,16 0,35 1,55 |
1,54 0,12 1,46 |
0,64 0,64 0,56 |
Материальный баланс | ||||
Взято, % (масс.) Вакуумный газойль Водород |
- - |
100,0 0,39 |
100,0 0,75 |
100,0 1,05 |
Итого |
- |
100,39 |
100,75 |
101,05 |
Получено, % (масс.) Газ сухой Сероводород Гидрогенезат Потери |
- - - - |
0,68 0,91 98,69 0,11 |
1,18 1,57 97,93 0,07 |
3,14 2,53 95,37 0,01 |
Итого |
- |
100,39 |
100,75 |
101,05 |
Условия проведения процесса гидроочистки различны в зависимости от применяемого сырья и используемого катализатора. Вакуумные газойли подвергают гидрообессериванию при более высоких давлениях и значительно меньших объемных или массовых скоростях, чем легкие газойли.
Средние по фракционному составу дистилляты легче обессеривать, чем вакуумные газойли; при разбавлении вторых первыми катализатор используется лучше, что позволяет снизить давление и расход водорода [15].
С повышением в сырье содержания коксообра-зующих соединений и металлов уменьшается активность катализатора, поэтому процесс гидроочистки приходится вести при более высокой температуре или с меньшей скоростью подачи сырья в реактор.
Основная часть тяжелого вакуумного газойля поступает в реактор в жидком состоянии, несмотря на значительную мольную концентрацию в газосырьевой смеси водорода и других газов, способствующих испарению жидких фракций.
Максимальная температура при жидкофазном процессе на 20°С выше (400 вместо 380 °С) температуры для парофазного процесса, а среднее количество циркуляционного газа больше примерно в 1,5 раза. Ниже даны режимы работы реакторов при жидко-фазном (капельном) и парофазном гидрообессери-вании дистиллятов [14]:
Показатели |
Жидкофазный режим |
Парофазный режим |
Сырьё
Температура, °С Давление, МПа Массовая скорость подачи сырья, т/(м3ч) Количество циркуляционного газа, м3 на 1 т сырья |
Керосиновые, тяжелые газойлевые и вакуумные дистилляты 300-400 3-10 1-5 50-300 |
Бензиновые или бензино-керосиновые дистилляты (до 250 °С) 300-380 2-4 4-6 40-200 |
В
ходе межрегенерационного пробега
установок температуру в
На
одной из заводских установок
с тремя последовательно
На установках для гидроочистки, дистиллятов в цилиндрических вертикальных реакторах с неподвижными слоями катализатора широко применяют алюмокобальтмолибденовые либо алюмони-кельмолибденовые катализаторы. При сопоставлении катализаторов установлено, что А1—Со—Мо катализаторы более эффективны в отношении удаления серы, а А1—Ni—Мо катализаторы — в отношении удаления азота и насыщения ароматических соединений и олефинов [17, 18]. Известны гидро-обессеривающие катализаторы с повышенной активностью в отношении удаления азота из керосиновых дистиллятов, атмосферных и вакуумных газойлей, а также мазутов. Так, фирма Procatalise (Франция) выпускает три сорта катализатора такого типа на носителе АlО3 [19]:
Индекс катализатора |
Форма частиц |
Размер частиц, мм |
Активные компоненты |
HR 306 HR 145 HR 346 |
Экструдаты Сферическая Экструдаты |
1,2 2-4 1,2 |
Co - Mo Ni - Mo Ni - Mo |
Сроки службы катализаторов (от 36 до 48 мес) для процессов гидрообессеривания легких, тяжелых и вакуумных газойлей одинаковые, однако производительность катализаторов различна, поскольку гидрообессеривание каждого вида сырья ведут с разной объемной скоростью.
Информация о работе Гидроочистка газойлей. Технологическая схема