Автор: Пользователь скрыл имя, 03 Января 2012 в 19:55, курсовая работа
В условиях рыночных отношений на первый план выдвигаются такие вопросы, касающиеся основных фондов, как технический уровень, качество, надежность продукции, что целиком зависит от качественного состояния техники и эффективного её использования. Улучшение технических качеств средств труда и оснащенность работников ими обеспечивают основную часть роста эффективности производственного процесса.
Введение 3
I.Теоретическая часть
1. Экономическая сущность основных фондов 4
1.1 Классификация основных фондов 5
2. Показатели основных фондов 7
2.1 Показатели оценки основных фондов 7
2.2 Показатели амортизации основных фондов 9
2.3. Показатели износа основных фондов 10
3. Изучение основных фондов 12
3.1 Статистический анализ показателей эффективности основных фондов.. 13
II. Расчетная часть 17
III. Аналитическая часть……………………………………………………….35
Заключение 40
Список литературы 41
– сумма всех частот,
fМе – частота медианного интервала,
SMе-1 – кумулятивная (накопленная) частота интервала, предшествующего медианному.
Определяем медианный интервал, в котором находится порядковый номер медианы (n).
он находится в интервале 1,060 – 1,140.
(руб.)
Таким образом, половина предприятий имеет фондоотдачу больше 1,096, а другая половина – меньше 1,096.
Чтобы рассчитать характеристики ряда распределения: среднеарифметическую, среднее квадратическое отклонение, коэффициент вариации, рассчитаем необходимые расчетные значения и результаты представим в таблице 4:
Таблица 4
Группа пред-тий по величине фондоотдачи | Число пред-тий
fj |
Середина
интервала |
Расчетное значение | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 |
0,900 – 0,980 | 3 | 0,940 | 2,82 | -0,160 | 0,026 | 0,077 |
0,980 – 1,060 | 7 | 1,020 | 7,14 | -0,080 | 0,006 | 0,045 |
1,060 – 1,140 | 11 | 1,100 | 12,1 | 0,000 | 0,000 | 0,000 |
1,140 – 1,220 | 5 | 1,180 | 5,9 | 0,080 | 0,006 | 0,032 |
1,220 – 1,300 | 4 | 1,260 | 5,1 | 0,160 | 0,026 | 0,102 |
Итого | 30 | 33,00 | 0,064 | 0,256 |
Таблица с необходимыми расчетными значениями для расчета характеристик ряда распределения.
Средняя арифметическая определяется по формуле:
Средне квадратическое отклонение:
Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:
Вывод:
В результате группировки образовалось пять групп с равными интервалами равными 0,08, где выяснилось, что наиболее многочисленной является третья группа предприятий у которых величина фондоотдачи от 1,060 – 1,140 руб., в эту группу входят 11 предприятий. Второй по численности является вторая группа предприятий, куда входят 7 предприятий, и величина фондоотдачи от 0,980 – 1,060 . Третьей группой по численности является четвертая группа, куда входят 5 предприятий, величина фондоотдачи от 1,140 – 1,220. Четвертой по численности является пятая группа величина фондоотдачи которых от 1,220 – 1,300. Пятой по численности является первая группа, куда входит 3 предприятия, величина фондоотдачи от 0,9-0,98.
Средняя фондоотдача для этой совокупности составляет 1,092. Наиболее часто встречаются предприятия с фондоотдачей около 1,096. У 50% предприятий фондоотдача более 1,096, а у первой и второй группы предприятий фондоотдача менее 1,096. В среднем разница между фондоотдачей у какого – либо из предприятий от их среднего значения составляет 0,0976.
Данная совокупность является количественно однородной, т.к. коэффициент вариации не превышает нормальное состояние 33% и равен 8,36%.
Задание 2
Решение:
2.1
При использовании метода
строим аналитическую группировку, характеризующую зависимость между факторным признаком Х – Выпуск продукции и результативным признаком Y – Фондоотдача. Макет аналитической таблицы имеет следующий вид (табл. 5):
Таблица 5
|
Групповые
средние значения
получаем из таблицы 2, основываясь
на итоговых строках «Всего». Построенную
аналитическую группировку представляет
табл. 6.
Таблица 6
|
Вывод. Данные таблицы 6 показывают, что с ростом инвестиций в основные фонды нераспределенная прибыль увеличивается. Следовательно, между исследуемыми признаками существует прямая корреляционная связь.
2.2 Для измерения тесноты связи между факторным и результативным признаками рассчитывают специальные показатели – эмпирический коэффициент детерминации и эмпирическое корреляционное отношение .
Эмпирический коэффициент детерминации оценивает, насколько вариация результативного признака Y объясняется вариацией фактора Х (остальная часть вариации Y объясняется вариацией прочих факторов). Показатель рассчитывается как доля межгрупповой дисперсии в общей дисперсии по формуле
где – общая дисперсия признака Y,
– межгрупповая (факторная) дисперсия признака Y.
Значения показателя изменяются в пределах . При отсутствии корреляционной связи между признаками Х и Y имеет место равенство =0, а при наличии функциональной связи между ними - равенство =1.
Общая дисперсия характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных). Этот показатель вычисляется по формуле
,
где yi – индивидуальные значения результативного признака;
– общая средняя значений результативного признака;
n – число единиц совокупности.
Общая средняя как средняя взвешенная по частоте групп интервального ряда:
Расчет
Для
расчета общей дисперсии
применяется
вспомогательная таблица 7.
Таблица 7
Номер
пред-тий п/п |
Выпуск продукции, млн руб. | |||
1 | 2 | 3 | 4 | 5 |
1 | 36,45 | -7,568 | 57,275 | 1328,603 |
2 | 23,4 | -20,618 | 425,102 | 547,560 |
3 | 46,54 | 2,522 | 6,360 | 2165,972 |
4 | 59,752 | 15,734 | 247,559 | 3570,302 |
5 | 41,415 | -2,603 | 6,776 | 1715,202 |
6 | 26,86 | -17,158 | 294,397 | 721,460 |
7 | 79,2 | 35,182 | 1237,773 | 6272,640 |
8 | 54,72 | 10,702 | 114,533 | 2994,278 |
9 | 40,424 | -3,594 | 12,917 | 1634,100 |
10 | 30,21 | -13,808 | 190,661 | 912,644 |
11 | 42,418 | -1,600 | 2,560 | 1799,287 |
12 | 64,575 | 20,557 | 422,590 | 4169,931 |
13 | 51,612 | 7,594 | 57,669 | 2663,799 |
14 | 35,42 | -8,598 | 73,926 | 1254,576 |
15 | 14,4 | -29,618 | 877,226 | 207,360 |
16 | 36,936 | -7,082 | 50,155 | 1364,268 |
17 | 53,392 | 9,374 | 87,872 | 2850,706 |
18 | 41 | -3,018 | 9,108 | 1681,000 |
19 | 55,68 | 11,662 | 136,002 | 3100,262 |
20 | 18,2 | -25,818 | 666,569 | 331,240 |
21 | 31,8 | -12,218 | 149,280 | 1011,240 |
22 | 39,204 | -4,814 | 23,175 | 1536,954 |
23 | 57,128 | 13,110 | 171,872 | 3263,608 |
24 | 28,44 | -15,578 | 242,674 | 808,834 |
25 | 43,344 | -0,674 | 0,454 | 1878,702 |
26 | 70,72 | 26,702 | 712,997 | 5001,318 |
27 | 41,832 | -2,186 | 4,779 | 1749,916 |
28 | 69,345 | 25,327 | 641,457 | 4808,729 |
29 | 35,903 | -8,115 | 65,853 | 1289,025 |
30 | 50,22 | 6,202 | 38,465 | 2522,048 |
Итого | 1320,54 | 0,000 | 7028,034 | 65155,564 |