Статистический приемочный контроль по альтернативному признаку

Автор: Пользователь скрыл имя, 30 Апреля 2012 в 20:48, курсовая работа

Описание работы

В рыночной экономике проблема качества является важнейшим фактором повышения уровня жизни, экономической, социальной и экологической безопасности. Качество – комплексное понятие, характеризующее эффективность всех сторон деятельности: разработка стратегии, организация производства, маркетинг и др. Важнейшей составляющей всей системы качества является качество продукции. В современной литературе и практике существуют различные трактовки понятия качество. Международная организация по стандартизации определяет качество (стандарт ИСО-8402) как совокупность свойств и характеристик продукции или услуги, которые придают им способность удовлетворять обусловленные или предполагаемые потребности. Этот стандарт ввел такие понятия, как "обеспечение качества", "управление качеством", "спираль качества". Требования к качеству на международном уровне определены стандартами ИСО серии 9000. Первая редакция международных стандартов ИСО серии 9000 вышла в конце 80-х годов и ознаменовала выход международной стандартизации на качественно новый уровень. Эти стандарты вторглись непосредственно в производственные процессы, сферу управления и установили четкие требования к системам обеспечения качества. Они положили начало сертификации систем качества. Возникло самостоятельное направление менеджмента – менеджмент качества. В настоящее время ученые и практики за рубежом связывают современные методы менеджмента качества с методологией TQM (total quality management) – всеобщим (всеохватывающим, тотальным) менеджментом качества.

Содержание

1.1. Качество как объект управления
1.2. Контроль качества
Глава 2.Статистический приемочный контроль в действии.
2.1. Статистический приемочный контроль по альтернативному признаку
2.2. Стандарты статистического приемочного контроля
2.3. Контрольные карты

Работа содержит 1 файл

Курсовая работа. Статистический приемочный контроль.doc

— 214.50 Кб (Скачать)

Часто при определении  факторов, влияющих на какой-либо результативный показатель, характеризующий качество используют схемы Исикава.

Они были предложены профессором Токийского университета Каору Исикава в 1953 г. при анализе различных мнений инженеров. Иначе схему Исикава называют диаграммой причин и результатов, диаграммой "рыбий скелет", деревом и т. д.

Она состоит  из показателя качества, характеризующего результат и факторных показателей (рис. 3.).

Рис. 3. Структура  диаграммы причин и результатов

Построение диаграмм включает следующие этапы:

выбор результативного  показателя, характеризующего качество изделия (процесса и т. д.);

выбор главных  причин, влияющих на показатель качества. Их необходимо поместить в прямоугольники ("большие кости");

выбор вторичных  причин ("средние кости"), влияющих на главные;

выбор (описание) причин третичного порядка ("мелкие кости"), которые влияют на вторичные;

ранжирование  факторов по их значимости и выделение наиболее важных.

Диаграммы причин и результатов имеют универсальное  применение. Так, они широко применяются  при выделении наиболее значимых факторов, влияющих, например, на производительность труда.

Отмечается, что  число существенных дефектов незначительно и вызываются они, как правило, небольшим количеством причин. Таким образом, выяснив причины появления немногочисленных существенно важных дефектов, можно устранить почти все потери.

Эта проблема может  решаться с помощью диаграмм Парето.

Различают два  вида диаграмм Парето:

1. По результатам  деятельности. Они служат для  выявления главной проблемы и  отражают нежелательные результаты  деятельности (дефекты, отказы и  т. д.);

2. По причинам (факторам). Они отражают причины  проблем, которые возникают в ходе производства.

Рекомендуется строить много диаграмм Парето, используя  различные способы классификации  как результатов, так и причин приводящим к этим результатам. Лучшей следует считать такую диаграмму, которая выявляет немногочисленные, существенно важные факторы, что и является целью анализа Парето.

Построение диаграмм Парето включает следующие этапы:

1. Выбор вида  диаграммы (по результатам деятельности  или по причинам (факторам).

2. Классификация  результатов (причин). Разумеется, что любая классификация имеет элемент условности, однако, большинство наблюдаемых единиц какой-либо совокупности не должны попадать и строку "прочие".

3. Определение  метода и периода сбора данных.

4. Разработка  контрольного листка для регистрации данных с перечислением видов собираемой информации. В нем необходимо предусмотреть свободное место для графической регистрации данных.

5. Ранжирование  данных, полученных по каждому  проверяемому признаку в порядке  значимости. Группу "прочие" следует приводить в последней строке вне зависимости от того, насколько большим получилось число.

6. Построение  столбиковой диаграммы (рис. 4.).

Рис 4. Связь между  видами дефектов и числом дефектных  изделий

Значительный  интерес представляет построение диаграмм ПАРЕТО в сочетании с диаграммой причин и следствий.

Выявление главных  факторов, влияющих на качество продукции  позволяет увязать показатели производственного  качества с каким-либо показателем, характеризующим потребительское  качество.

Для такой увязки возможно применение регрессионного анализа.

Например, в результате специально организованных наблюдений за результатами носки обуви и  последующей статистической обработки  полученных данных, было установлено, что срок службы обуви (у), зависит от двух переменных: плотности материала подошвы в г/см3 (х1) и предела прочности сцепления подошвы с верхом обуви в кг/см2 (х2). Вариация этих факторов на 84,6% объясняет вариацию результативного признака (множественный коэффициент коррекции R = 0,92), а уравнение регрессии имеет вид:

у = 6,0 + 4,0 * х1 + 12 * х2

Таким образом, уже в процессе производства зная характеристики факторов х1 и х2 можно  прогнозировать срок службы обуви. Улучшая  вышеназванные параметры, можно  увеличить срок носки обуви. Исходя из необходимого срока службы обуви, можно выбирать технологически допустимые и экономически оптимальные уровни признаков производственного качества.

Наибольшее практическое распространение имеет характеристика качества изучаемого процесса путем  оценки качества результата этого процесса В этом случае речь о контроле качества изделий, деталей, получаемых на той или иной операции. Наибольшее распространение имеют несплошные методы контроля, а наиболее эффективны те из них, которые базируются на теории выборочного метода наблюдения.

Рассмотрим пример. На электроламповом заводе цех производит электролампочки.

Для проверки качеств  ламп отбирают совокупность 25 штук и  подвергают испытанию на специальном  стенде (меняется напряжение, стенд  подвергается вибрации и т. д.). Каждый час снимают показания о продолжительности горения ламп. Получены следующие результаты:

6; 6; 4; 5; 7;

5; 6; 6; 7; 8;

5; 7; 7; 6; 4;

5; 6; 8; 7; 5;

7; 6; 5; 6; 6.

Прежде всего  необходимо построить ряд распределения.

Продолжительность горения (х)

частота (f)

x*f

В % к итогу

Накопленный процент

4

2

8

4

8

8

8

5

6

30

6

6

24

32

6

9

54

0

0

36

68

7

6

42

6

6

24

92

8

2

16

4

8

8

100 

25

150

20

28

100

Затем следует  определить

1) среднюю продолжительность  горения ламп:

часов;

2) Моду (вариант,  который чаще всего встречается  в статистическом ряду). Она равна  6;

3) Медиану (зачение,  которое расположено в середине  ряди. Это такое значение ряда, которое делит его численность  на две равные части). Медиана равна, также 6.

Построим кривую распределения (полигон) (рис. 5.).

Рис. 5. Распределение  ламп по продолжительности горения

Определим размах:

R = Хmax – Хmin = 4 часа.

Он характеризует  пределы изменения варьирующего признака. Среднее абсолютное отклонение:

часа.

Это средняя  мера отклонения каждого значения признака от средней.

Среднее квадратическое отклонение:

часа.

Рассчитаем коэффициенты вариации:

1) по размаху: 

;

2) по среднему  абсолютному отклонению:

;

3) по среднему  квадратическому отношению: 

.

С точки зрения качества продукции, коэффициенты вариации должны быть минимальными.

Так как завод  интересует не качество контрольных  ламп, а всех ламп, возникает вопрос о расчете средней ошибки выборки:

часа,

 и от числа  от отобранных единицsкоторая  зависит от колеблемости признака  (n).

= DПредельная  ошибка выборки  . Доверительное число t показывает, что расхождение не превышаетmt* кратную ему ошибку выборки. С вероятностью 0,954 можно утверждать, что разность между выборочной и генеральной не превысит двух величин средней ошибки выборки, то есть в 954 случаях ошибка репрезентативности не выйдет за .m2

.

Таким образом, с вероятностью 0,954 ожидается, что средняя продолжительность горения будет не меньше, чем 5,6 часа и не больше, чем 6,4 часа. С точки зрения качества продукции необходимо стремиться к уменьшению этих отклонений.

Обычно при  статистическом контроле качества допустимый уровень качества, который определяется количеством изделий, прошедших контроль и имевших качество ниже минимально приемлемого, колеблется от 0,5% до 1% изделий. Однако, для компаний, которые стремятся выпускать продукцию только высшего качества этот уровень может быть недостаточным. Например, "Toyota" стремится свести уровень брака к нулю, имея в виду, что хотя и выпускаются миллионы автомобилей, но каждый покупатель приобретает лишь один из них. Поэтому наряду со статистическими методами контроля качества на фирме разработаны простые средства контроля качества всех изготавливаемых деталей (TQM). Статистический контроль качества в первую очередь применяется в отделениях фирмы, где продукция изготавливается партиями. Например, в лоток высокоскоростного автоматического процесса после обработки поступает 50 или 100 деталей, из которых контроль проходят только первая и последняя. Если обе детали не имеют дефектов, то все детали считаются хорошими. Однако, если последняя деталь окажется бракованной, то будет найдена и первая дефектная деталь в партии, а весь брак будет изъят. Для того, чтобы ни одна партия не избежала контроля, пресс автоматически отключается после обработки очередной партии заготовок. Применение выборочного статистического контроля имеет эффект всеобъемлющего тогда, когда каждая производственная операция выполняется стабильно благодаря тщательной отладке оборудования, использованию качественного сырья и т. д.  
 
 
 
 

Заключение

В процессе выполнения курсовой работы на тему «Статистический приемочный контроль по альтернативному признаку» была достигнута поставленная цель — я изучила сущность применения статистического приемочного контроля по альтернативному признаку. Для достижения цели были выполнены следующие задачи:

  • Качество — важнейший фактор повышения уровня жизни;
  • Данный стандарт устанавливает требования к нормированию качества партий штучной продукции, порядок приминения и правила выбора планов и схем статистического приемочного контроля по альтернативному признаку на основе каталога планов и схем контроля.
 

Вопросам управления качеством посвящено много исследований ученых различных стран, накоплен значительный опыт в области менеджмента качества. Поэтому важно обобщить основные положения теории и практики в  данной области.

Российские предприятия  пока еще имеют отставания в области  применения современных методов  менеджмента качества. Между тем  повышение качества несет поистине колоссальные возможности. Однако повышение  качества невозможно без изменения  отношения к качеству на всех уровнях. Призывы к повышению качества не могут быть реализованы, если руководители различных уровней не станут относиться к качеству как образу жизни. К управлению качеством необходим системный подход.

Система управления качеством представляет собой совокупность управленческих органов и объектов управления, мероприятий, методов и средств, направленных на установление, обеспечение и поддержание высокого уровня качества продукции.

Контроль качества предполагает выявление бракованных  изделий. Большую роль в контроле качества играют статистические методы, применение которых требуется в стандартах ИСО 9000 при оценке систем менеджмента качества.

В контроле качества с успехом применяются контрольные  карты. Контрольная карта состоит  из центральной линии, двух контрольных пределов (над и под центральной линией) и значений характеристики (показателя качества), нанесенных на карту для представления состояния процесса. Контрольные карты служат для выявления определенной причины (не случайной). Схема Исикава (диаграмма причин и результатов) состоит из показателя качества, характеризующего результат и факторных показателей.

Диаграммы Парето служат для выявления немногочисленных, существенно важных дефектов и причин их возникновения.

Информация о работе Статистический приемочный контроль по альтернативному признаку