Статистические игры

Автор: Пользователь скрыл имя, 28 Октября 2013 в 16:12, реферат

Описание работы

Обычно теорию игр определяют как раздел математики для изучения конфликтных ситуаций. Это значит, что можно выработать оптимальные правила поведения каждой стороны, участвующей в решении конфликтной ситуации.
В экономике, например, оказался недостаточным аппарат математического анализа, занимающийся определением экстремумов функций. Появилась необходимость изучения так называемых оптимальных минимаксных и максимальных решений. Следовательно, теорию игр можно рассматривать как новый раздел оптимизационного подхода, позволяющего решать новые задачи при принятии решений.

Содержание

Введение 3
СТАТИСТИЧЕСКИЕ ИГРЫ 4
1.2. СВОЙСТВА СТАТИСТИЧЕСКИХ ИГР 6
2.1. ВЫБОР ФУНКЦИЙ РЕШЕНИЯ 10
2.2. МАКРОЭКОНОМИЧЕСКИЕ РЕШЕНИЯ 15
Заключения 18
ЛИТЕРАТУРА 19

Работа содержит 1 файл

Глава 6 СТАТИСТИЧЕСКИЕ ИГРЫ.docx

— 141.72 Кб (Скачать)

Н - множество всех смешанных стратегий h игрока 2;

К - риск игрока 2.

Составим сравнительную таблицу  задач статистических решений с игрой двух лиц с нулевой суммой (табл. 6.1).

Таблица 6.1

2.1. ВЫБОР ФУНКЦИЙ РЕШЕНИЯ

Для всех состояний природы не существует одной наилучшей функции решения. От статистика требуется применение таких методов, которые дают оптимальные функции решения в более узком диапазоне.

Для этого необходимо использовать критерии оптимальности.

Статистик в статистической игре (W, D, R) или в расширенных статистических играх стремится к выигрышу, т. е. к определению наилучшей функции решения, при которой риск R(Q, d) был бы минимальным. Но это не просто, так как для каждого состояния природы Q имеется своя лучшая функция.

Пусть у нас имеются две различные  функции решения d1 и (рис. 6.2).

Рис. 6.2. Сравнение двух функций решения

Можно выделить область, где функция d1 будет лучшей, - в диапазоне состояний природы Q1< Q<Q2. Вторая функция d2 будет лучшей для состояния природы при Q<Q1 и при Q>Q2.

Функция d Î D называется допустимой, если в множестве D* нет никакой другой функции решения d0, которая была бы лучшей d для всех QÎW. Данная функция для каждого QÎW должна удовлетворять неравенству R(Q,d0) £ R(Q,d). Таким образом, допустимая функция решения не будет доминирующей стратегией статистика в статистической игре.

Рассмотрение только допустимых функций  существенно уменьшит множество D* до множества допустимых функций решения.

Отметим, что байесовские функции  решения входят в класс допустимых функций.

Определение. Функция решения d0ÎD* называется байесовской относительно априорного распределения xÎX состояний природы Q, если она минимизирует байесовский риск r(x, d) на множестве D*.

Таким образом, r(x, d)  = r(x, d). Приведем формулу Байеса. Прежде чем ее написать, обратимся к теореме о полной вероятности [2, разд. 2.5, 2.6].

Теорема. Если событие А может наступить только при условии появления одного из событий В1, В2, ...,Bn, образующих полную группу несовместных событий, то вероятность события А равна сумме произведений вероятностей каждого из событий В1, В2, ...,Bn на соответствующую условную вероятность события А:

где P(Bi) - вероятность события Bi;

Р(А|Вi) - условная вероятность события А в случае, если событие Вi уже произошло.

Формула Байеса используется тогда, когда  событие А появляется совместно с каким-либо из полной группы несовместных событий В1, В2, ..., Bn . Событие А произошло, и требуется произвести количественную переоценку вероятностей событий В1, В2, ..., Bn. При этом известны вероятности Р(В1), Р(В2),..., Р(Bn) до опыта (априорные). Требуется определить вероятности после опыта (апостериорные).

Апостериорные вероятности представляют собой условные вероятности Р(В1|А), Р(В2|А) ,..., Р(Вn|А). Вероятность совместного наступления событий А с любым из этих событий Вj по теореме умножения равна:

Эту формулу можно переписать исходя из формулы полной вероятности:

Задача 6.1. Собирается партия исправных изделий с трех предприятий. Первый завод поставляет 60 %, второй - 30 %, третий - 10 % изделий. В1, В2, В3 - события, соответствующие тому, что изделия изготовлены на первом, втором и третьем предприятиях.

Вероятность исправной работы изделий  первого предприятия равна 0,98, второго - 0,99, третьего - 0,96.

Определить вероятность того, что  в собранную партию исправных изделий попали соответственно изделия с первого, второго и третьего предприятий.

Введем обозначения:

А - событие, заключающееся в том, что изделие исправно;

Р(А) - полная вероятность того, что изделие исправно;

Р(В1|А), Р(В2|А), Р(В3|А) - условные вероятности того, что исправное изделие изготовлено соответственно на первом, втором и третьем предприятиях;

Р(A|В1), Р(A|В2), Р(A|В3) - условные вероятности того, что изделие, изготовленное соответственно на первом, втором и третьем предприятиях, исправно;

Р(В1), Р(В2), Р(В3) - вероятности того, что изделие изготовлено соответственно на первом, втором и третьем предприятиях.

Известно: Р(А|В1) = 0,98; Р(А|В2) = 0,99; Р(А|В3) = 0,96; Р(В1) = 0,60; Р(В2) = 0,30; Р(В3) = 0,10.

Требуется определить Р(А); Р(В1|А); Р(В2|А); Р(В3|А).

Решение. 1. Определим полную вероятность  того, что изделия, прибывшие с разных предприятии, исправны:

2. Вычислим условные вероятности  того, что в партию исправных попали изделия с первого, второго и третьего предприятии соответственно:

3. Проверим: Р(В1|А) + Р(В2|А) + Р(В3|А) = 0,599 + 0,303 + + 0,098 = 1.

Вывод. По формуле Байеса количественная переоценка доли предприятии в партии исправных изделии составляет: первое предприятие имеет 59,9 %; второе - 30,3 %; третье - 9,8 %.

Остановимся на некоторых нестандартных  принципах принятия решений.

Принцип Байеса - Лапласа. Данный принцип отступает СП-условий полной неопределенности. В нем предполагается, что возможные состояния природы могут достигаться с вероятностями Р1, P2,..., Рn при условии, что Р1+ P2+ ,...,+ Рn =1. Байес в 1763 г. предложил считать равными вероятности отдельных состояний природы.

В 1812 г. Лаплас обобщил этот принцип  на случай различных вероятностей, но тем не менее говорят и о байесовском подходе. Если напомнить, что байесовские функции решения входят в класс допустимых функций, то будет понятно их широкое использование в практике принятия решений (см. гл. 3).

Принцип Гурвица. Этот принцип является упрощенным вариантом принципа Байеса - Лапласа. Если известны вероятности отдельных состояний, то берут среднее арифметическое результатов при наилучшем решении. Иногда, если существует возможность определить вес наихудшего и наилучшего решений, то используют их взвешенную среднюю арифметическую.

Проиллюстрируем применение данного  принципа на примере строительства предприятий при четырех разных состояниях природы и наличии четырех разных типов предприятий.

Задача 6.2. Имеются определенные средства на возведение предприятий. Необходимо наиболее эффективно использовать капиталовложения с учетом климатических условий, подъездных путей, расходов по перевозкам и т.д. Сочетание этих факторов по влиянию на эффективность капиталовложений можно разбить на четыре состояния природы B1, В2, В3, В4. Типы предприятий обозначим А1, А2, А3, А4. Эффективность строительства определяется как процент прироста дохода по отношению к сумме капитальных вложений. Информацию, отражающую постановку задачи, представим в табл. 6.2.

Таблица 6.2

 

Варианты решений

1. Решение по принципу стратегических  игр, по принципу максимина:  = 4 . Нужно строить предприятие А3.

Изменим условия задачи и предположим, что в табл. 6.2 отражены затраты  на строительство предприятий, тогда  выбор типа предприятий следует  осуществить по принципу минимакса: =9. Нужно строить предприятие А1 или А4.

2. Решение по принципу Гурвица.

Если известны все вероятности, определяющие состояния природы, сделаем  выбор с помощью среднего арифметического  лучшего и худшего результатов.

Согласно табл. 6.2 это будет рекомендация строить предприятие А2, обеспечивающее максимальную среднюю эффективность Ф = = 8.

3. Применим принцип Байеса при  равных вероятностях состояний природы Р(В1)=Р(В2)=Р(В3)=Р(В4)=1/4. Определим рентабельность, соответствующую решению А1, т. е. М1:

Далее определяем М2, М3, и М4.

Выводы. Предполагая, что все вероятности  состояний природы равны, следует строить предприятие А3, так как M3 = 7,5 = max (M1, M2, M3, M4). Отметим, что принцип Байеса-Лапласа имеет смысл применять, если возможно оценить вероятности отдельных состояний природы. При этом необходимо, чтобы решения также повторялись многократно.

Когда события повторяются многократно, действует закон больших чисел, согласно которому достигается максимальный средний результат.

При единичных решениях принцип  Байеса - Лапласа не следует применять.

Принцип Гурвица фактически является упрощением байесовских оценок. Гурвиц допускает, в частности, при отсутствии информации о вероятностях возникновения отдельных состояний природы брать среднее арифметическое значение результатов наилучшего и наихудшего решений.

2.2. МАКРОЭКОНОМИЧЕСКИЕ РЕШЕНИЯ

При применении теории статистических игр на предприятии, в фирме бывает возможным получить дополнительную статистическую информацию, которая позволяет перейти от стратегической к статистической игре с природой. Очень часто при возможности многократного повторения как состояний природы, так и решений статистика мы можем принимать минимаксные байесовские решения.

Для макроэкономических задач значительно  реже удается получать информацию о  состояниях природы. Кроме того, имея распределение вероятностей ее состояний, мы не всегда можем этой информацией  воспользоваться. Принятие решения  может носить одноразовый характер. В этой ситуации наилучшая байесовская стратегия при многократном принятии решения утрачивает свои оптимизационные свойства.

Задачи, решаемые в условиях неопределенности, имеющие характер игры с природой, делятся на два типа:

1) в условиях полной неопределенности, когда отсутствует возможность получения дополнительной статистической информации о состояниях природы; основной моделью при этом служит стратегическая игра (W, A, L), которая не преобразуется в статистическую;

2) в условиях риска, если существует возможность сбора дополнительной статистической информации о распределении состояний природы; эти задачи можно преобразовать к статистической игре (W, D, R), в которой функции риска рассматриваются как платежи.

Рассмотрим практический пример.

Задача 6.3. Получение лицензии на новую продукцию.

Требуется выбрать лучшую лицензию на выпуск легкового автомобиля у  иностранных фирм. Имеются четыре предложения, следовательно, множество  решении А = {а1, а2, а3, а4}, где а1 -решение о покупке лицензии у инофирмы Ai (i = ).

Фирмы требуют неодинаковые суммы  за лицензии в зависимости от различных затрат на организацию производства и издержек эксплуатации.

Известно, что основным требованиям  владельцев автомобилей (эстетика, количество мест в салоне, скорость) удовлетворяют все четыре фирмы. В результате главным критерием являются затраты, связанные со сделкой.

Пусть на основе экономического расчета  вычислена эффективность покупки каждой из четырех лицензий. Эта эффективность зависит от длительности периода, в течение которого можно будет выпускать автомобили по лицензии, учитывая уровень их рентабельности и соответствия последним достижениям науки и техники в области автомобилестроения. Множество состояний природы , где Q1, Q2 - рентабельность и соответствие техническому уровню выпущенных по приобретенной лицензии первого и второго автомобилей, достигаемые соответственно через 15 и 25 лет.

Представим формулу экономической  эффективности:

где У - продажная цена автомобиля;

С - себестоимость;

W- выигрыш игрока 1, в данном случае статистика, представляющего автомобильную промышленность.

Отразим в табл. 6.3 полученные значения эффективности W(Q, a).

Таблица 6.3.

 

О стратегиях природы нет информации, и ее невозможно получить.

Решение нужно найти при полной неопределенности, так как нет  данных для перехода от стратегической игры к статистической.

Применим максимальный критерий Вальда.

Для этого перепишем табл. 6.3 и  найдем минимальные значения по строке и максимальные - по столбцу. Это определит матрицу игры (табл. 6.4).

Таблица 6.4

 

Матрица игры (W, A, W) имеет седловую точку, равную 22 %, поскольку

Итак, оптимальной нерандомизированной максимальной стратегией статистика (игрока 1), представляющего интересы автомобильной промышленности, будет решение а2, что соответствует покупке лицензии у фирмы А2 на производство легкового автомобиля.

Это наиболее осторожная стратегия  в игре с природой при отсутствии дополнительной статистической информации. При этом в качестве функций платежей была принята эффективность сделки W(Q , a) = 22.

 

Заключения

 

     Как уже отмечалось, в теоретико-игровых математических  моделях неопределённость обычно связана с тем, что лицо, принимающее решение, не знает выборов, сделанных другими активными сторонами, то есть не знает

истинной ситуации в известном  множестве ситуаций (так называемая стратегическая неопределённость). А риск в статистической игре связан с наличием случайных факторов, влияющих на последствия принимаемых решений.

     В обычной постановке статистическая игра - это антагонистическая

игра (игра 2-х лиц с нулевой  суммой) в которой игрок II (Статистик) принимает решение после проведения статистического эксперимента, дающего ему некоторую вероятностную информацию о выборе, сделанном игроком I.

 

ЛИТЕРАТУРА

1. Вальд А. Последовательный анализ: Пер. с англ. - М.: Физмат-гиз, 1960.

2. Вентцель Е. С., Овчаров А. А. Теория вероятностей и ее инженерные приложения. - М.: Наука, 1988.

3. Гольштейн Е. Г., ЮдинД. Б. Новые направления в линейном программировании. - М.: Сов. радио, 1966.

4. Дубров А. М. Последовательный анализ в статистической обработке информации. - М.: Статистика, 1976.

5. Дубров А. М. Математико-статистическая оценка эффективности в экономических задачах. - М.: Финансы и статистика, 1982.

6. Дубров А. М. Статистические методы в инвестиционной деятельности // Рубин Ю. Б., Солдаткин В. И., Петраков Н. Я. Общая редакция. Инвестиционно-финансовый портфель. - М.: Совинтэк, 1993. - С. 163-176.

7. Замков О. О., Толстопятенко А. В., Черемных Ю. Н. Математические методы в экономике. - М.: ДИС, 1997. - С. 245-267.

Информация о работе Статистические игры