Автор: Пользователь скрыл имя, 29 Марта 2013 в 06:15, реферат
В данной работе рассмотрим такое понятие, как средние величины. Большое распространение в статистике имеют средние величины. В средних величинах отображаются важнейшие показатели товарооборота, товарных запасов, цен. Средними величинами характеризуются качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др. Правильное понимания сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1. Понятие средней величины. . . . . . . . . . 4
2. Виды средних величин . . . . . . . . . . . . . 5
2.1 Степенные средние величины . . . . . . 6
2.1.1 Средняя арифметическая . . . . . . . . 8
2.1.2 Средняя гармоническая . . . . . . . . . .10
2.1.3 Средняя геометрическая . . . . . . . . . 11
2.1.4 Средняя квадратическая . . . . . . . . . 12
2.2 Структурные средние величины . . . . 13
Заключение . . . . . . . . . . . . . . . . . . . . . . . . .15
Список литературы . . . . . . . . . . . . . . . . . . 17
Ме = (n(число признаков в совокупности) + 1)/2,
в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).
При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:
где:
— искомая медиана
— нижняя граница интервала, который содержит медиану
— величина интервала
— сумма частот или число членов ряда
- сумма накопленных частот
— частота медианного интервала
Заключение
В заключении подведем итоги. Средние величины — это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения . Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений.
Средняя отражает то общее, что складывается
в каждом отдельном, единичном объекте
благодаря этому средняя
Отклонение индивидуального от общего — проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, свойственная предприятиям на определенном этапе экономического развития; изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.
Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности.
Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.
Список литературы