Автор: Пользователь скрыл имя, 20 Декабря 2011 в 15:40, реферат
Понятие о статистических рядах динамики. Показатели, рассчитываемые на основе рядов динамики: проверка ряда на наличие тренда, анализ сезонных колебаний, проверка рядов динамики (отклонений) на автокорреляцию и установление связи между признаками.
Изучение тренда включает в себя два основных этапа :
Проверка на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям .
Если в ряду динамики
общая тенденция к росту или
снижению отсутствует , то количество
серий является случайной величиной ,
распределенной приближенно по нормальному
закону (для n > 10) . Следовательно , если
закономерности в изменениях уровней
нет , то случайная величина R оказывается
в доверительном интервале
Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.
Среднее
число серий вычисляется по формуле
1 :
Среднее
квадратическое отклонение числа серий
вычисляется по формуле 2 :
здесь n -- число уровней ряда .
Выражение
для доверительного интервала приобретает
вид
Полученные границы доверительного интервала округляют до целых чисел , уменьшая нижнюю границу и увеличивая верхнюю .
Непосредственное выделение тренда может быть произведено тремя методами .
При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала , при четном это делать нельзя . Поэтому при обработке ряда четными интервалами их искусственно делают нечетными , для чего образуют ближайший больший нечетный интервал , но из крайних его уровней берут только 50%.
Недостаток
методики сглаживания скользящими
средними состоит в условности определения
сглаженных уровней для точек
в начале и конце ряда . Получают
их специальными приемами – расчетом
средней арифметической взвешенной
. Так , при сглаживании по трем точкам
выровненное значение в начале ряда рассчитывается
по формуле 3 :
.
(3)
Для последней точки расчет симметричен .
При сглаживании
по пяти точкам имеем такие уравнения
(формулы 4):
(4)
Для последних двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках .
Формулы
расчета по скользящей средней выглядят
, в частности , следующим образом (формула
5):
для
3--членной
.
где f(t) – уровень , определяемый тенденцией развития ;
-- случайное и циклическое отклонение от тенденции.
Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t) , а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом , чтобы она давала содержательное объяснение изучаемого процесса .
Чаще всего при выравнивании используются следующий зависимости :
линейная ;
параболическая ;
экспоненциальная
или ).
Оценка параметров ( ) осуществляется следующими методами :
В большинстве расчетов используется метод наименьших квадратов , который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных :
Для линейной зависимости ( ) параметр обычно интерпретации не имеет , но иногда его рассматривают , как обобщенный начальный уровень ряда ; -- сила связи , т. е. параметр , показывающий , насколько изменится результат при изменении времени на единицу . Таким образом , можно представить как постоянный теоретический абсолютный прирост .
Построив уравнение регрессии , проводят оценку его надежности . Это делается посредством критерия Фишера (F) . Фактический уровень ( ) , вычисленный по формуле 7, сравнивается с теоретическим (табличным) значением :
, (7)
где k -- число параметров функции , описывающей тенденцию;
n -- число уровней ряда ;
Остальные необходимые показатели вычисляются по формулам 8 – 10 :
(9)
(10)
сравнивается
с
при
степенях свободы
и уровне значимости a (обычно a = 0,05). Если
>
, то уравнение
регрессии значимо , то есть построенная
модель адекватна фактической временной
тенденции.
Анализ сезонных колебаний
Уровень сезонности оценивается с помощью :
Индексы сезонности показывают , во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня , вычисляемого по уравнению тенденции f(t) . При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет . Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года . Индексы сезонности – это , по либо уровень существу , относительные величины координации , когда за базу сравнения принят либо средний уровень ряда , либо уровень тенденции . Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции .
Анализ взаимосвязанных рядов динамики .
В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию , для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста .