Автор: Пользователь скрыл имя, 02 Января 2012 в 15:31, курсовая работа
При сопоставлении каких-либо данных, характеризующих экономические явление или процесс во времени и в пространстве, широко используются относительные статистические показатели — индексы. Они позволяют рассчитать и соизмерить сложные социально-экономические явления, особенно состоящие из непосредственно несопоставимых элементов. Индексы основаны на отчетных и базисных данных в зависимости от отношения показателей к содержанию исследования. Элементами индексов являются индексируемая величина, ее тип (форма), вес, срок исполнения. Использование индексов позволяет создавать математические модели и проводить расчеты относительно финансового положения фирмы и планов ее развития.
Необходимость в применении особых приемов построения индексов количественных показателей возникает, когда итоги по отдельным элементам сложного явления непосредственно несоизмеримы. Например, предприятие экспортирует станки, металл, товары широкого потребления. Если имеются сведения об экспорте продукции только в натуральном выражении, то динамику экспорта продукции предприятия в целом нельзя охарактеризовать показателем , где - количество продукции данного вида в натуральном выражении, экспортируемой в отчетном периоде; - количество продукции того же вида, отправленной на экспорт в базисном периоде.
Различные виды продукции неравноценны по количеству затраченного на них общественного труда и имеют разные потребительные стоимости. Поэтому было бы неправильно непосредственно суммировать итоги по этим видам продукции. Для получения общего итога необходимо данные по различным видам продукции привести к единой, общей мере, например, использовать стоимостную оценку экспорта продукции. Тогда вместо получим суммы вида , где - цена единицы продукции данного вида (при расчете экспорта это будет внешнеторговая цена). Такой переход от одних единиц измерения к другим в теории индексов называют соизмерением. При построении индексов объемных показателей в качестве соизмерителей применяют те или иные качественные показатели. Например, цену, себестоимость или трудоемкость единицы изделия. Выбор коэффициента соизмерения в каждом конкретном случае зависит от цели исследования. Универсальное значение в индексах физического объема имеют стоимостные соизмерители. Стоимость всей выработанной на предприятии продукции получаем умножением на цену количества выпущенной продукции каждого вида и суммированием произведений по всем видам продукции. Тогда стоимость продукции базисного периода будет определена так:
+ + +…+ =
а стоимость продукции отчетного периода составит:
+ + +…+ = ,
где - количество единиц отдельных видов продукции, соответственно в базисном и отчетном периодах; - цена единицы отдельных видов продукции соответственно в базисном и отчетном периодах; i = 1, 2, 3…, n - количество отдельных видов продукции.
Если разделить стоимость продукции отчетного периода на стоимость продукции базисного периода, то получим индекс стоимости продукции. В общем вид его можно записать:
Приведенная
формула характеризует
Такой индекс называют агрегатным индексом физического объема.
В
практике планирования при проведении
экономико-статистического
Величина
агрегатного индекса
Общий индекс физического объема, построенный на базе индивидуальных индексов, принимает форму среднего арифметического или гармонического индекса.
Применение той или иной формулы индекса физического объема (агрегатного, среднего арифметического или гармонического) зависит от имеющейся в нашем распоряжении информации.
Но индекс физического объема продукции не всегда может быть представлен средней величиной из индивидуальных индексов. Этого нельзя сделать в том случае, когда перечень изделий в текущем периоде не совпадает с их перечнем в базисном периоде, т.е. средние индексы могут быть рассчитаны лишь по сравниваемому кругу изделий. По несравниваемой продукции нельзя определить индивидуальные индексы, а потому становится невозможным преобразование агрегатного индекса в адекватные ему средние индексы.
В промышленности наблюдается непрерывное обновление ассортимента выпускаемой продукции, в связи с чем объем выпуска ряда новых видов изделий не может быть сопоставлен ни с одним из предшествующих периодов. Если строго придерживаться формулы агрегатного индекса, то пришлось бы определить индексы физического объема не по всей продукции, а только по тем ее видам, которые вырабатывались на протяжении всех изучаемых периодов времени. Индекс же физического объема продукции должен отразить изменение в общем объеме выпуска, которое происходит как вследствие увеличения (уменьшения) выпуска изделий в отчетном периоде по сравнению базисным, так и в результате появления новых видов изделий или исключения старых, ранее изготовляемых изделий. Чтобы индекс продукции мог отразить указанные изменения, числитель индекса должен состоять из двух слагаемых: стоимости сравниваемой продукции, т.е. продукции, которая изготавливалась и в предшествующие периоды, и стоимости несравнимой продукции, т.е. тех новых изделий, которые ранее не вырабатывались. В знаменателе индекса физического объема продукции приводится стоимость всей продукции базисного периода, включая стоимость и той продукции, которая в отчетном периоде уже не выпускается.
И, наконец, расчет агрегатных индексов может производиться на основе данных о стоимостных (а не натуральных) объемах выпуска каждого вида продукции и индивидуальных индексах цен. В условиях рыночной экономики мониторинг цен имеет первостепенное значение.
Пусть
мы располагаем данными о
=
Если в расчетах
динамики выпуска продукции предприятия
опираются на индекс Пааше, то следует
произвести пересчет знаменателя формулы
умножением стоимости продукции
базисного периода на индекс цен, т.е. рассчитать
величины
. В этом случае формула общего индекса
физического объема
продукции имеет следующий вид:
=
Наряду с индексами физического объема продукции в планировании и статистико-экономическом анализе деятельности предприятий и отраслей широко применяются индексы качественных показателей: цен, себестоимости, производительности труда, средней заработной платы и т.д. Качественный показатель характеризует уровень изучаемого результативного показателя в расчете на количественную единицу и определяется как отношение данного результативного показателя в расчете на количественную единицу и определяется как отношение данного результативного показателя к связанному с ним количественному показателю (фактору), на единицу которого он определяется. Например, себестоимость единицы продукции определяется как отношение суммы затрат на производство этого вида продукции к количеству единиц продукции данного вида; средняя заработная плата определяется делением фонда заработной платы на численность работников и т.д.
Индивидуальные индексы цен характеризуют относительное изменение уровня цен единицы каждого вида продукции в отчетном периоде по сравнению с базисным.
Для определения общего изменения уровня цен на продукцию предприятия, включающую различные виды, нужно рассчитать агрегатный индекс цен. Непосредственное суммирование уровня цен одного станка и одной тонны литья не имеет экономического содержания. Несоизмеримость уровней в таком случае преодолевается путем взвешивания цены каждого вида продукции на количество произведенных единиц, т.е. для отчетного и базисного периода определяются величины вида , которые и сравниваются между собой. Чтобы это сравнение отражало только изменение цен, необходимо, чтобы величина фиксировалась в числителе и знаменателе индекса цен на уровне одного из периодов.
Общая формула агрегатного индекса цен записывается:
Формула агрегатного индекса Ласпейреса3:
Формула агрегатного индекса Пааше4:
Значения агрегатных индексов, рассчитанные по формулам Ласпейреса и Пааше, совпадают лишь в случае полного совпадения состава продукции отчетного и базисного периодов. Различия в соотношении этих индексов определяются относительной вариацией индивидуальных индексов цен ( ), индивидуальных индексов физического объема ( ) и коэффициентом корреляции, оценивающим степень тесноты корреляционной связи между названными индивидуальными индексами (r ):
.
Степень
тесноты связи между
r
=
Если
подходить к принципам
Если ориентироваться на синтетическое направление в использовании индексов, т.е. поставить задачу характеристики общего изменения уровня анализируемого показателя, предпочтение может быть отдано индексу Ласпейреса. Например, при исчислении агрегатного индекса физического объема продукции в этом случае достаточно вести мониторинг за изменением физических объемов продукции, тогда как при использовании варианта агрегатного индекса Пааше должно учитываться изменение и физического объема продукции и цен. Расчет агрегатного индекса физического объема продукции по формуле Ласпейреса получил наибольшее распространение в мировой практике. Опора на неизменную структуру потребления при расчете агрегатного индекса цен также обусловила применение формулы Ласпейреса при расчете индекса потребительских цен (ИПЦ), величина которого используется при индексации доходов населения.
Таблица
1.
Название индекса | Агрегатные индексы | |
физического объема | цен | |
Индекс с базисными «весами» (формула Ласпейреса) | ||
Индекс с «весами» отчетного периода (формула Пааше) | ||
«Идеальная» формула Фишера |