Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автор: Пользователь скрыл имя, 22 Декабря 2012 в 19:34, лабораторная работа

Описание работы

При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации.

Работа содержит 1 файл

Отчет.doc

— 935.50 Кб (Скачать)

Вывод:

Результаты выполнения аналитической группировки предприятий  по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно (незакономерно) увеличиваются (уменьшаются) средние групповые значения  результативного признака . Следовательно, между признаками Х и Y ………………………………................. ...

……....................................................................................................................................


Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты  связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

           ,

где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты  связи на основе показателя эмпирического  корреляционного отношения служит шкала Чэддока:

Значение η

0,1 – 0,3

0,3 – 0,5

0,5 – 0,7

0,7 – 0,9

0,9 – 0,99

Сила связи

Слабая

Умеренная

Заметная

Тесная

Весьма тесная


Результаты выполненных  расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η =……………………, что в соответствии с оценочной шкалой Чэддока говорит о  …………………………степени связи изучаемых признаков.


Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.

4.1. Построение регрессионной  модели заключается в нахождении  аналитического выражения связи  между факторным признаком X и результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения …………………….


4.2. В случае линейности  функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

Вывод:

Значение коэффициента корреляции r =…………… , что в соответствии с оценочной шкалой Чэддока говорит о ..….………………………. степени связи изучаемых признаков.


Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:

  1. оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
  2. определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции  r  и индекса детерминации R2;
  3. проверка значимости уравнения регрессии в целом по F-критерию Фишера;
  4. оценка погрешности регрессионной модели.
    1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

      1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
      2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

 – значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

 – рассчитанный уровень  значимости коэффициентов уравнения  приведен в ячейках Е91 и Е92;

 – доверительные интервалы  коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение  значимости коэффициентов уравнения

Уровень значимости – это  величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.

В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь  между признаками X и Y в принципе не может аппроксимироваться  линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =…..………… Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а0 признается типичным (случайным).

Для коэффициента регрессии  а1  рассчитанный  уровень  значимости есть αр =………..…… Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а1 признается типичным (случайным).


5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы  коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

 

Таблица 2.9

Границы доверительных  интервалов коэффициентов уравнения

Коэффициенты

Границы доверительных интервалов

Для уровня надежности Р=0,95

Для уровня надежности Р=0,683

нижняя

верхняя

нижняя

верхняя

а0

       

а1

       

Вывод:

В  генеральной  совокупности  предприятий  значение  коэффициента  а0 следует ожидать с надежностью Р=0,95 в пределах ……………. а0 ….……….., значение коэффициента а1 в пределах …………… а1 ….………… Уменьшение уровня надежности ведет к расширению (сужению) доверительных интервалов коэффициентов уравнения.


    • Определение практической пригодности построенной регрессионной модели.

Практическую пригодность  построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:

    • близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;
    • близость к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.
    • Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.
    • В основе такой оценки лежит равенство R = r (имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.
    • Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при >0,7, т.е. при >0,7. Для индекса детерминации R2 это означает выполнение неравенства R2 >0,5.
    • При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство 0,7, а следовательно, и неравенство .
    • С учетом вышесказанного, практическая пригодность построенной модели связи оценивается по величине R2 следующим образом:
    • неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;
    • неравенство означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которой менее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.

Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").

Вывод:

Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =…….…….., R2 =……..………. Поскольку и , то построенная линейная регрессионная модель связи  пригодна (не пригодна) для практического использования.


  •  Общая оценка адекватности  регрессионной модели по F-критерию Фишера

Адекватность построенной  регрессионной модели фактическим  данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.

Рассчитанная для уравнения  регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.

Вывод:

Рассчитанный уровень  значимости αр индекса детерминации R2 есть αр=……………… Так как он меньше(больше) заданного уровня значимости α=0,05, то значение R2 признается типичным (случайным) и модель связи между признаками Х и Y ……………………применима (неприменима) для генеральной совокупности предприятий отрасли в целом.


  •  Оценка погрешности регрессионной модели

Погрешность регрессионной  модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии . Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.

Погрешность регрессионной  модели выражается в процентах и рассчитывается как величина .100.

В адекватных моделях  погрешность не должна превышать 12%-15%.

Значение  приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение    – в таблице описательных  статистик (ЛР-1, Лист 1, табл.3, столбец 2).

Вывод:

Погрешность линейной регрессионной  модели составляет .100=___________.100=…..……..%, что подтверждает (не подтверждает) адекватность построенной модели ……………………………

Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel