Автор: Пользователь скрыл имя, 19 Января 2012 в 12:46, курсовая работа
Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени. Эта задача решается при помощи анализа рядов динамики. Без этого анализа в статистике невозможно рассмотреть ни один процесс развития, т.к. он выявляет и измеряет закономерности развития общественных явлений. Именно поэтому анализ показателей рядов динамики является актуальной темой во все времена.
Введение …………………………………………………………………..3
1. Теоретическая часть………………………………………………………….4
1.1 Общие понятия, краткое описание показателей рядов динамики...4
1.2Система статистических показателей, характеризующих аналитические показатели рядов динамики………………………………………………….7
1.3Статистические методы, применяемые при изучении рядов динамики………………………………………………………...……….........14
2. Расчетная часть……………………………………………………….............19
3. Аналитическая часть………………………………………………….............31
Заключение…………………………………………………………………35
Список используемой литературы……………………………………….
Простейшими моделями (формулами), выражающими тенденцию развития, являются:
где а0, а1 – параметры уравнения;
t – время;
В тех случаях, когда требуется особо точное изучение тенденции развития, при выборе вида адекватной функции можно использовать специальные критерии математической статистики.
Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими и эмпирическими уровнями:
∑(
ŷt-уi)2→min,
где ŷt – выравненные (расчетные) уровни;
уi – фактические уровни.
Параметры уравнения аi, удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней уi плавно изменяющимися уровнями ŷt, наилучшим образом отражающими статистические данные.
Задача
состоит в определении
а0=∑у/n;
а1=∑уt/∑t2.
Для иллюстрации этого метода я использую данные таблицы 3.1.
Таблица 3.3
Расчет параметров линейного тренда выпуска продукции Х
Месяц | Выпуск, тыс. шт. (у) | t | yt | t2 | yt |
Январь | 20 | -2 | -20 | 4 | 18 |
Февраль | 18 | -1 | -18 | 1 | 20,4 |
Март | 22 | 0 | 0 | 0 | 22,8 |
Апрель | 26 | 1 | 26 | 1 | 25,2 |
Май | 28 | 2 | 56 | 4 | 27,6 |
Сумма | 114 | 0 | 24 | 10 | 114 |
а0=114/5=22,8 тыс. шт.;
а1=24/10=2,4 тыс. шт.
Тренд имеет вид : уt=22,8+2,4t.
Придавая конкретные значения t можно получить выровненные значения выпуска продукции. При этом а1=2,4 означает, что год от года выпуск продукции в среднем возрастает на 2,4 тыс. шт. Это выровненная, устойчивая, неуклонно возрастающая от месяца к месяцу тенденция. Если вычислить значения среднего абсолютного изменения, среднего темпа роста, то можно узнать прогнозные значения выпуска продукции на несколько месяцев вперед. Так, прогноз выпуска на июнь можно определить двумя способами:
уиюнь=умай+Δу;
уиюнь=умай*Т.
Фактические и расчетные значения выпуска продукции представлю в виде графика (рис. 3.1).
Рис. 3.1. Уровни выпуска продукции Х
Соединив
точки, построенные по фактическим
данным, получается ломаная линия, на
основании которой
Тенденция роста выпуска продукции Х в данном периоде отчетливо проявляется в результате построения выровненной прямой.
РАСЧЕТНАЯ ЧАСТЬ
С целью изучения расходов населения на платные услуги в отчетном периоде по региону была произведена 25%-ная механическая выборка, в результате которой получены следующие данные:
№ района п/п | Численность населения (тыс. чел.) | Объем платных услуг (млн. руб.) | № района п/п | Численность населения (тыс. чел.) | Объем платных услуг (млн. руб.) |
1 | 31,9 | 119,5 | 16 | 25,3 | 93,3 |
2 | 25,7 | 95,7 | 17 | 34,4 | 129,4 |
3 | 19,4 | 71,4 | 18 | 25,9 | 95,8 |
4 | 27,2 | 94,0 | 19 | 14,7 | 51,0 |
5 | 23,5 | 86,8 | 20 | 26,6 | 98,5 |
6 | 23,2 | 85,7 | 21 | 25,5 | 94,2 |
7 | 13,4 | 56,3 | 22 | 24,7 | 90,5 |
8 | 26,0 | 96,1 | 23 | 19,5 | 70,1 |
9 | 25,0 | 92,8 | 24 | 27,9 | 103,6 |
10 | 20,8 | 75,2 | 25 | 24,8 | 91,4 |
11 | 24,3 | 89,3 | 26 | 26,1 | 96,0 |
12 | 28,9 | 107,8 | 27 | 22,3 | 84,3 |
13 | 29,0 | 77,3 | 28 | 13,8 | 47,6 |
14 | 30,0 | 112,2 | 29 | 33,8 | 101,1 |
15 | 21,4 | 77,7 | 30 | 22,6 | 81,4 |
Задание 1
По исходным данным:
Сделайте выводы по результатам выполнения задания.
Решение:
а) Построить
ранжированный ряд по численности
населения и составить новые
ряды:
Ранжированный ряд по группировочному признаку
№ района п/п | Численность населения (тыс. чел.) | Объем платных услуг (млн. руб.) | Ранжированный ряд по численности населения | Новые ряды | |
№ района п/п | Объем платных услуг (млн. руб.) | ||||
1 | 31,9 | 119,5 | 13,4 | 7 | 56.3 |
2 | 25,7 | 95,7 | 13,8 | 28 | 47,6 |
3 | 19,4 | 71,4 | 14,7 | 19 | 51,0 |
4 | 27,2 | 94,0 | 19,4 | 3 | 71,4 |
5 | 23,5 | 86,8 | 19,5 | 23 | 70,1 |
6 | 23,2 | 85,7 | 20,8 | 10 | 75,2 |
7 | 13,4 | 56,3 | 21,4 | 15 | 77,7 |
8 | 26,0 | 96,1 | 22,3 | 27 | 84,3 |
9 | 25,0 | 92,8 | 22,6 | 30 | 81,4 |
10 | 20,8 | 75,2 | 23,2 | 6 | 85,7 |
11 | 24,3 | 89,3 | 23,5 | 5 | 86,8 |
12 | 28,9 | 107,8 | 24,3 | 11 | 89,3 |
13 | 29,0 | 77,3 | 24,7 | 22 | 90,5 |
14 | 30,0 | 112,2 | 24,8 | 25 | 91,4 |
15 | 21,4 | 77,7 | 25,0 | 9 | 92,8 |
16 | 25,3 | 93,3 | 25,3 | 16 | 93,3 |
17 | 34,4 | 129,4 | 25,5 | 21 | 94,2 |
18 | 25,9 | 95,8 | 25,7 | 2 | 95,7 |
19 | 14,7 | 51,0 | 25,9 | 18 | 95,8 |
20 | 26,6 | 98,5 | 26,0 | 8 | 96,1 |
21 | 25,5 | 94,2 | 26,1 | 26 | 96,0 |
22 | 24,7 | 90,5 | 26,6 | 20 | 98,5 |
23 | 19,5 | 70,1 | 27,2 | 4 | 94,0 |
24 | 27,9 | 103,6 | 27,9 | 24 | 103,6 |
25 | 24,8 | 91,4 | 28,9 | 12 | 107,8 |
26 | 26,1 | 96,0 | 29,0 | 13 | 77,3 |
27 | 22,3 | 84,3 | 30,0 | 14 | 112,2 |
28 | 13,8 | 47,6 | 31,9 | 1 | 119,5 |
29 | 33,8 | 101,1 | 33,8 | 29 | 101,1 |
30 | 22,6 | 81,4 | 34,4 | 17 | 129,4 |
сумма | 723,8 | 2666 | 723,8 | 2666 |
б) Определить шаг группировки:
h=(xmax-xmin)/n, где n=5
h=(34.4-13.4)/5=4.2;
в) Определить границы групп:
1 группа – (13.4+4,2)=17.6;
2 группа – (17.6+4,2)=21.8;
3 группа – (21.8+4,2)=26;
4 группа – (26+4,2)=30.2;
5 группа – (30.2+4,2)=34.4;
г) Оформить
результаты группировки в виде таблицы:
Простая группировка
Границы групп по чис-ти населения | Кол-во
групп |
Объем платных | |
всего | В среднем | ||
13,4-17,6 | 3 | 154.9 | 77.45 |
17,6-21,8 | 4 | 294.4 | 147.2 |
21,8-26 | 13 | 1177.3 | 588.65 |
26-30,2 | 7 | 689.4 | 344.7 |
30,2-34,4 | 3 | 350 | 175 |
Итого | 30 | 2666 | 1333 |
д) Сделать вывод:
По результатам
этой группировки видно, что при
росте численности населения, объем
платных услуг сначала увеличивается,
а после идет на спад.
2. хар=∑хf/∑f;
х=(15.5*154.9+19.7*294.4+23.9*
=(2400.95+5799.68+28137.47+
á=√∑(х-х)2f/∑f;
á=√((15.5-25.1)2*154.9+(
=
√ (14275.5+8584.7+1695.3+6204.6+
υ=á/х*100;
υ=4.28/25.1*100=17.05%
Мо=х0+ι*((fm-fm-1)/(fm-fm-1)+(
где х0 – нижняя граница модального интервала;
ι – величина модального интервала;
fm – частота модального интервала;
fm-1 – частота интервала перед модальным;
fm+1 – интервала после модального.
Мо=21.8+4.2*((1177.3-294.4)/(
=21.8+4.2*0.32=23.1;
Ме=х0+ι*((½∑f-Sm-1)/f),
где х0 – нижняя граница медианного интервала;
ι – величина медианного интервала;
∑f – сумма накопленных частот;
Sm-1 – сумма накопленных частот до медианного интервала;
f – частота медианного интервала.
Ме=21.8+4.2*((1333-449.3)/
Задание 2
По исходным данным:
Сделайте выводы по результатам выполнения задания.
Решение
1. Для решения этой задачи я использую метод корреляционно-регрессионного моделирования.