Виды неустойчивости

Автор: Пользователь скрыл имя, 23 Сентября 2011 в 20:34, реферат

Описание работы

Что такое неустойчивость системы в самом широком смысле? Это неспособность системы сохранять равновесие. Например, карандаш, поставленный на острие, неизбежно падает. И хотя теоретически существует положение равновесия - строго вертикальная ориентация карандаша - в жизни оно никогда не наблюдается. Причина проста: силы, возникающие при смещении карандаша из положения равновесия, стремятся не вернуть его в это положение, а усилить это смещение, а значит, любое начальное микроскопическое отклонение от равновесия будет быстро усиливаться со временем.

Работа содержит 1 файл

реферат по неустойчивости.doc

— 223.50 Кб (Скачать)

Введение

Неустойчивость.

    Что такое неустойчивость системы в самом широком смысле? Это неспособность системы сохранять равновесие. Например, карандаш, поставленный на острие, неизбежно падает. И хотя теоретически существует положение равновесия - строго вертикальная ориентация карандаша - в жизни оно никогда не наблюдается. Причина проста: силы, возникающие при смещении карандаша из положения равновесия, стремятся не вернуть его в это положение, а усилить это смещение, а значит, любое начальное микроскопическое отклонение от равновесия будет быстро усиливаться со временем. Именно такое положение равновесия и называется неустойчивым, а про систему, попавшую в такое положение, говорят "неустойчивая".

    Понимание того, когда система находится  в устойчивом, а когда в неустойчивом состоянии, безусловно, очень важно. Скажем, вы теоретически вычислили, что некоторая конструкция будет находиться в положении равновесия при таких-то и таких-то параметрах. Вы ее построили и обнаружили, что вместо того, чтобы ровно стоять, конструкция рушится прямо на глазах. Вывод: то положение равновесия, которое вы нашли теоретически, оказалось неустойчивым, нестабильным.

    В случае твердого тела все было достаточно просто: движение твердого тела описывается  с помощью относительно несложных уравнений, и в большинстве случаев поведение системы можно понять, даже их и не решая. Совершенно иная ситуация с жидкостями. Жидкость - система с огромным числом степеней свободы, именно это и делает ее поведение столь разнообразным. И одно из проявлений этого - существование множества интересных (и порой совершенно неожиданных) типов неустойчивого поведения жидкости. 

 

Гидродинамическая неустойчивость

Итак, переход к  турбулентности связан с неустойчивостью, а неустойчивость, в свою очередь, – с возникновением и развитием возмущений. Откуда же в реальной физической системе, какой является движущая жидкость, могут зародиться возмущения? Источников возмущений очень много. Прежде всего реальная установка (канал с движущейся жидкостью) находится на лабораторном столе, которому передаются колебания от стен и пола здания – результат сотрясения из-за проехавшей по соседству машины или, может быть, даже слабого сейсмического возмущения. Далее, вход жидкости в канал практически никогда не бывает идеально гладким, на входе в жидкость вносятся входные возмущения, они движутся вдоль жидкости вместе с ней и могут при благоприятных (неблагоприятных?) условиях нарастать. Стенки канала почти никогда не бывают лишены неровностей, шероховатостей. Обтекающий эти шероховатости поток непрерывно возмущается. Этот список можно было бы продолжать долго. Но есть источник возмущений, принципиально неустранимый. Это так называемые флуктуации. Когда мы говорим, например, что в данной точке потока плотность постоянна, это лишь означает, что она постоянна в среднем. Около этого среднего значения происходят малые, но макроскопические отклонения в ту или другую сторону. Они приводят к макроскопическим (малым) отклонениям (флуктуациям) давления, температуры и скорости. Флуктуации, таким образом, являются постоянно действующим источником возмущений, в принципе неустранимым.

Поставим теперь (мысленно) эксперимент по ламинарно-турбулентному  переходу в трубе конечной длины. Вход в трубу постараемся сделать, насколько это возможно, гладким  и постепенным, пытаясь устранить возмущения на входе. От шероховатости стенок также попытаемся отделаться благодаря тонкой шлифовке поверхности. Тот факт, что труба имеет конечную длину, также играет важную роль: представим себе, что в потоке жидкости возникло малое возмущение, которое, во-первых, сносится потоком вниз по течению и, во-вторых, в условиях неустойчивости нарастает. Для его роста требуется некоторое характерное время. Требуется время и для сноса возмущения потоком, оно просто равно (по порядку величины) длине трубы, поделенной на скорость потока. Если характерное время нарастания возмущения больше времени сноса, то оно не успеет вырасти на рабочем участке трубы и будет вынесено за его пределы. Если поставить опыт с учетом сделанных оговорок, то получится, что такие важные источники возмущений, как вход и шероховатость стенок, почти полностью устраняются, а те возмущения, которые все-таки возникнут, будут вытеснены потоком за пределы рабочего участка. Результаты такого опыта оказываются удивительными: удается существенно отодвинуть порог возбуждения турбулентности, критическое число Рейнольдса, таким образом, удается увеличить на 2-3 порядка, происходит "затягивание порога турбулентности".

Можно поставить  также опыт с регулируемой шероховатостью стенок. Уменьшить шероховатость можно лишь до определенного предела, скажем до молекулярных размеров. Но можно ее искусственно увеличить, наклеивая на стенки, допустим, мелкие кристаллики контролируемых размеров. Таким образом, удается создать целую гамму трубок с оцениваемой наперед шероховатостью. Опыт говорит, что в этих случаях порог ламинарно-турбулентного перехода также изменяется в довольно широких пределах, причем критическое число Рейнольдса возрастает с уменьшением шероховатости.

Эти простые опыты говорят о том, что идея связать переход к турбулентности с гидродинамической неустойчивостью здравая. Но для полного спокойствия необходимо, скажем, на примере какой-либо задачи детально сравнить получаемое теоретически критическое число Рейнольдса с опытным его значением. Совпадение этих чисел будет существенным доводом в пользу концепции гидродинамической неустойчивости. 

 

Развитие  неустойчивости Рэлея — Тейлора.

Неустойчивость  Рэлея — Тейлора (названа в честь Лорда Рэлея и Дж. И. Тейлора) — возникает между двумя контактирующими сплошными средами различной плотности, когда более тяжёлая жидкость толкает более лёгкую. Примером такой неустойчивости может служить неустойчивость капли воды на поверхности масла — вода будет пытаться проникнуть сквозь масло.

Основным параметром, определяющим скорость развития этой неустойчивости является число Атвуда. 

Общие свойства неустойчивости на примере неустойчивости Рэлея-Тэйлора

    Основные  черты развития нестабильности в  жидкости можно проиллюстрировать на конкретных примерах. Рассмотрим две жидкости, находящиеся в сосуде (Рис.1а). Пусть более тяжелая жидкость расположена наверху, а граница их раздела абсолютно плоская. Такая ситуация, конечно же, невыгодна с точки зрения потенциальной энергии всей системы. Значит, более тяжелая жидкость будет стараться опуститься вниз. Однако просто так опуститься она не может: ведь она должна куда-то вытеснить находящуюся под ней более легкую жидкость. Как она может это сделать? Ответ известен всем из жизненного опыта: в одной части сосуда тяжелая жидкость будет опускаться вниз, а в другой будет всплывать легкая жидкость (Рис.1б).

      

    Но  тут опять не все так просто: ведь для того, чтобы такой процесс начался, нужно, во-первых, чтобы возник "зародыш", то есть небольшое начальное отклонение границы раздела от абсолютной плоскости, а во-вторых, чтобы это отклонение самопроизвольно усиливалось. Первое условие выполняется всегда: ведь все вещества состоят из движущихся молекул, и если где-то какая-то молекула случайно "выбилась" из своего вещества - вот вам и начальное отклонение. А вот со вторым условием все гораздо хитрее.

    

    При небольшом отклонении жидкости от равновесия обычно существуют два класса сил (Рис.2): силы, которые стараются вернуть  жидкость обратно в положение  равновесия (стабилизирующие силы), и силы, пытающиеся увести систему как можно дальше от положения равновесия (дестабилизирующие силы). В нашем случае к первому классу сил относится сила поверхностного натяжения. Эта сила старается минимизировать поверхность раздела двух жидкостей, выпрямить ее (Рис.2а). Ко второму классу относится сила тяжести: Земля притягивает тяжелую жидкость сильнее, и потому усиливает отклонения (Рис.2б). Итак, мы видим, что динамика жидкости в данном примере определяется противоборством двух конкурирующих сил. Важно еще и то, что обе эти силы одинаковым образом (линейно) зависят от величины отклонения. Поэтому оказывается, что та сила, которая "перевешивает" при небольшом отклонении, будет перевешивать и при любом другом отклонении. То есть, если возвращающая сила оказывается больше, все случайные отклонения от положения равновесия будут "гаситься", а значит, равновесие сохранится. Если же поверхностное натяжение не столь сильно, то преобладать будет сила тяжести, а значит, любое, даже самое маленькое возмущение будет быстро усиливаться, пока, наконец, не перерастет в течение, охватывающее всю систему. Именно такая ситуация и называется неустойчивостью Рэлея-Тэйлора.

    В жидкости существует еще много других типов неустойчивости (см. ссылку [1]). Однако для всех них характерно описанное выше противоборство двух типов сил. И от того, какая из этих сил победит, зависит дальнейшая эволюция жидкости. 
 

 

Постановка задачи

Аналитическое описание.

Задача о неустойчивости Рэлея — Тейлора имеет аналитическое  решение в рамках линейной теории устойчивости.

Пусть два протяжённых  плоских горизонтальных слоя жидкости расположены в поле тяжести друг над другом, причём более тяжёлая жидкость 1 находится вверху (на иллюстрации - синий цвет), плотности жидкостей ρ12. Верхняя и нижняя границы - твёрдые. Для простоты удобно пользоваться моделью невязкой несжимаемой жидкости, тогда система описывается уравнением Эйлера:

В дальнейшем компоненты скорости определяются как  . Вполне очевидно, что равновесное решение ( ) удовлетворяет модели, при этом из уравнения Эйлера для давления получается следующее:

Откуда определяется равновесное распределение давления (известный результат для давления столба жидкости):

    P0 = − ρgz.

Внесём в равновесное  состояние малые возмущения. Пусть  скорость настолько мала, что можно пренебречь нелинейным слагаемым в уравнении Эйлера, а давление имеет вид P = P0 + P', где P' < < P0. Тогда получим линейную систему уравнений для малых возмущений (далее штрих у давления опущен):

Граничные условия  задаются исходя из соображений равенства z-компонент скорости жидкостей 1 и 2 на границе раздела и наличия поверхностного натяжения. На верхней и нижней границах, т.к. жидкость идеальная, работают условия непротекания. Удобно принять координату границы раздела в равновесии за 0. На ней выполняется кинематическое условие

и динамическое условие

Условие непротекания верхней и нижней границ:

где ζ - величина отклонения границы от невозмущённой, σ - коэффициент поверхностного натяжения. Полученная задача для возмущений легко решается.

Положим, что  возмущения имеют вид:

где λ - скорость роста (инкремент) возмущения, kx,ky - компоненты волнового вектора возмущения границы.

Из уравнения  Эйлера выражается w:

а условие несжимаемости  даёт уравнение Лапласа для давления. В итоге, скорость течения из задачи удаётся исключить. Остаётся линейное уравнение:

с граничными условиями:

Решение уравнения Лапласа для давления:

Константы C1,C2 определяются из кинематического условия. Динамическое условие даёт связь между инкрементом и модулем волнового вектора

откуда непосредственно  следует выражение для критического волнового числа возмущений (при λ = 0):

    .

Если длина  волны больше критической, то возмущения границы будут нарастать.

В предельном случае бесконечно глубоких слоёв (kh > > 1) наибольшая скорость роста возмущений достигается при волновом числе

    .

В тонких слоях (kh < < 1):

     

 

  Приложения неустойчивости Рэлея-Тейлора

  Неустойчивость Рэлея-Тейлора в астрофизике.

Рис. 2. Схематическое  изображение плазмы с  
резкой границей в продольном магнитном поле H  
и в однородном поле силы тяжести: а - начальное  
состояние (неустойчивое равновесие), б - стадия  
развития неустойчивости Рэлея-Тейлора.

Информация о работе Виды неустойчивости