Слуховая сенсорная система

Автор: Пользователь скрыл имя, 16 Января 2012 в 19:20, реферат

Описание работы

Слуховой анализатор - совокупность структур, обеспечивающих восприятие звуковой информации, преобразование ее в нервные импульсы, последующую ее передачу и обработку в центральной нервной системе.
В слуховом анализаторе различают три отдела:
- периферический отдел (его образуют слуховые рецепторы, находящиеся в кортиевом органе внутреннего уха);

Содержание

Введение ……………………………………………………… 3
1 Строение органа слуха……………………………………... 4
2 Структура слуховой сенсорной системы…………………. 16
2.1 Проводящие пути слухового анализатора…………… 18
2.2 Корковый отдел слухового анализатора……………... 19
3 Физиология слуховой сенсорной системы……………….. 20
3.1 Локализация звука……………………………………... 21
3.2 Эхолокация…………………………………………….. 22
Заключение……………………………………………………. 24
Литература…………………………………………………….. 26

Работа содержит 1 файл

1.doc

— 421.00 Кб (Скачать)

      1. Преддверие, vestibulum, образующее среднюю часть лабиринта, - небольшая, приблизительно овальной формы полость, сообщающаяся сзади пятью отверстиями с полукружными каналами, а спереди - более широким отверстием с каналом улитки. На латеральной стенке преддверия, обращенной к барабанной полости, имеется уже известное нам отверстие, fenestra vestibuli, занятое пластинкой стремени. Другое отверстие, fenestra cochleae, затянутое membrana tympani secundaria, находится у начала улитки. Посредством гребешка, crista vestibuli, проходящего на внутренней поверхности медиальной стенки преддверия, полость последнего делится на два углубления, из которых заднее, соединяющееся с полукружными каналами, носит название recessus ellipticus, а переднее, ближайшее к улитке, - recessus sphericus. В recessus ellipticus берет начало маленьким отверстием, apertura interna aqueductus vestibuli, водопровод преддверия, проходящий через костное вещество пирамиды и оканчивающийся на ее задней поверхности. Под задним концом гребешка на нижней стенке преддверия находится небольшая ямка, recessus cochledris, соответствующая началу перепончатого хода улитки.

      2. Костные полукружные каналы, canales semicirculares ossei, - три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях. Передний полукружный канал, canalis semicircularis anterior, расположен вертикально под прямым углом к оси пирамиды височной кости, задний полукружный канал, canalis semicircularis posterior, также вертикальный, располагается почти параллельно задней поверхности пирамиды, а латеральный канал, canalis semicircularis lateralis, лежит горизонтально, вдаваясь в сторону барабанной полости. У каждого канала две ножки, которые, однако, открываются в преддверии только пятью отверстиями, так как соседние концы переднего и заднего каналов соединяются в одну общую ножку, crus commune. Одна из ножек каждого канала перед своим впадением в преддверие образует расширение, называемое ампулой. Ножка с ампулой называется crus ampullare, а ножка без расширения - cruus simplex.

      3. Улитка, cochlea, образуется спиральным костным каналом, canalis spiralis cochleae, который, начиная от преддверия, свертывается наподобие раковины улитки, образуя 2 1/5 круговых хода. Костный стержень, вокруг которого свертываются ходы улитки, лежит горизонтально и называется modiolus. В полость канала улитки на протяжении всех его оборотов отходит от modiolus спиральная костная пластинка, lamina spiralis ossea. Эта пластинка вместе с улитковым протоком делит полость канала улитки на два отделения: лестницу преддверия, scala vestibuli, сообщающуюся с преддверием, и барабанную лестницу, scdla tympani, которая открывается на скелетированной кости в барабанную полость через окно улитки. Поблизости этого окна в барабанной лестнице находится маленькое внутреннее отверстие водопровода улитки, aqueductus cochleae, наружное отверстие которого, apertura externa canaliculi cochleae, лежит на нижней поверхности пирамиды височной кости.

      Перепончатый лабиринт, labyrinthus membranaceus, лежит внутри костного и повторяет более или менее точно его очертания. Он содержит в себе периферические отделы анализаторов слуха и гравитации. Стенки его образованы тонкой полупрозрачной соединительнотканной перепонкой. Внутри перепончатый лабиринт наполнен прозрачной жидкостью - эндолимфой. Так как перепончатый лабиринт несколько меньше костного, то между стенками того и другого остается промежуток - перилимфатическое пространство, spatium perilymphaticum, наполненное перилимфой.

      В преддверии костного лабиринта заложены две части перепончатого лабиринта: utriculus (эллиптический мешочек) и sacculus (сферический мешочек). Utriculus, имеющий форму замкнутой трубки, занимает recessus ellipticus преддверия и соединяется сзади с тремя перепончатыми полукружными протоками, ductus semicirculares, которые лежат в таких же костных каналах, повторяя в точности форму последних.

      Поэтому различают передний, задний и латеральный перепончатые протоки, ductus semicircularis anterior, posterior et lateralis, с соответствующими ампулами: ampulla membranacea anterior, posterior et lateralis. Sacculus - грушевидной формы мешочек, лежит в recessus sphericus преддверия и находится в соединении с utriculus, так же как и с длинным узким протоком, ductus endolymphaticus, который проходит через aqueductus vestibuli и оканчивается небольшим слепым расширением, saccus endolymphaticus, в толще твердой оболочки на задней поверхности пирамиды височной кости. Небольшой каналец, соединяющий эндолимфатический проток с utriculus и sacculus, носит название ductus utriculosaccularis. Нижним своим суженным концом, переходящим в узкий ductus reuniens, sacculus соединяется с перепончатым протоком улитки. Оба мешочка преддверия окружены перилимфатическим пространством.

      Перепончатый лабиринт в области полукружных протоков подвешен на плотной стенке костного лабиринта сложной системой нитей и мембран. Этим предотвращается смещение перепончатого лабиринта при значительных движениях.

      Ни перилимфатическое, ни эндолимфатическое пространства «не закрыты намертво» от окружающей среды. Перилимфатическое пространство имеет связь со средним ухом через окна улитки и преддверия, которые эластичны и податливы. Эндолимфатическое пространство связано через эндолимфатический проток с эндолимфатическим мешочком, лежащим в полости черепа; он является более или менее эластичным резервуаром, который сообщается с внутренним пространством полукружных протоков и остальным лабиринтом [1]. 
 
 
 
 

      2 Структура слуховой сенсорной системы

      С физиологической точки зрения орган слуха делится на две части: звукопроводящий аппарат и звуковоспринимающий. К звуковоспринимающему аппарату относится Кортиев орган, слуховой нерв и слуховые центры (подкорковые и корковые). Звуковоспринимающий аппарат регулирует восприятия звуковых вибраций, и полное разрушение его, даже при целости звукопроводящего аппарата, вызывает полную глухоту.

Рисунок 6 - Схема строения кортиева органа:

/ — основная пластинка; 2 — костная спиральная пластинка; 3 — спиральный канал;

4 — нервные волокна; S — столбовые клетки, образующие тоннель (6); 7 — слуховые, или волосковые, клетки; 8 — опорные клетки; 9 — покровная пластинка.

       Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки. Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верхними концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям слуховые, или волосковые клетки, каждая из которых на своей верхней свободной поверхности имеет 15—20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной-спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены внутри от тоннеля в один ряд, а кнаружи—в три ряда. От основной пластинки они отделены опорными клетками.

       К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположены в центральном канале костного стержня улитки, где они образуют так называемый спиральный узел, гомологичный межпозвоночному узлу спинномозговых нервов. Каждая из трех с половиной тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волосковые клетки, количество которых достигает 15—20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

       Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к возникновению возбуждения в волосковых клетках, которое передается на конечные разветвления нервных волокон [2].

     

   

2.1 Проводящие пути  слухового анализатора

      Первый  нейрон проводящих путей слухового анализатора — упомянутые выше биполярные клетки. Их аксоны образуют улитковый нерв,, волокна которого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий.

      

Рисунок 5 -  Схема проводящих путей слухового анализатора: 

1 — рецепторы кортиева органа; 2 — тела биполярных нейронов; 3 — улитковый нерв; 4 — ядра продолговатого мозга, где ' расположены тела второго нейрона проводящих путей; 5 — внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 •— верхняя поверхность височной доли коры больших полушарий (нижняя стенка поперечной щели), где оканчивается третий нейрон; 7 — нервные волокна, связывающие оба внутренних коленчатых тела; 8 — задние бугры четверохолмия; 9 — начало эфферентных путей, идущих от четверохолмия. 

       Помимо  основного, проводящего пути, связывающего периферический отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуществляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм которого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу [2].

       2.2 Корковый отдел  слухового анализатора

       У человека ядро коркового отдела слухового анализатора расположено в височной, области коры больших,, полушарий. В той части поверхности височной' области, которая представляет собой нижнюю стенку поперечной, или сильвиевой, щели, расположено поле 41. К нему, а возможно и к соседнему полк» 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при двустороннем разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полушарием, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.  От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осуществляются корковые двигательные рефлексы на звуковые раздражители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.) [2].

       3 Физиология слуховой сенсорной системы

        С физиологической точки зрения орган слуха делится на две части: звукопроводящий аппарат и звуковоспринимающий. К первому относятся: наружное ухо, среднее, перилимфа и эндолимфа; ко второму Кортиев орган, слуховой нерв и слуховые центры (подкорковые и корковые). Звукопроводящий аппарат имеет вспомогательное значение - он проводит звуки до окончаний кохлеарного нерва, и, следовательно, разрушение его при целости нервного снаряда не влечет за собой сильной степени глухоты. Звуковоспринимающий же аппарат играет более существенную роль - он регулирует восприятия звуковых вибраций, и полное разрушение его, даже при целости звукопроводящего аппарата, вызывает полную глухоту [3].

       Из классических теорий слуха наиболее известна резонансная теория Г.Гельмгольца. По резонансной теории Гельмгольца, каждое такое волокно настроено, подобно струне, на определенную частоту колебаний. Теория Г.Гельмгольца была поставлена под сомнение венгерским физиком Георгом фон Бекеши. Теория Бекеши гласит – звуковая волна, проходя по перелимфе вызывает колебания базилярной в виде бегущей волны. В зависимости от частотной характеристики звука происходит максимальный изгиб основной мембраны на ограниченном участке. В 1940 году Бекеши установил, что мембрана ведет себя не как арфа с раздельными струнами, а как простыня, которую встряхнули за один конец. Основная мембрана не натянута и ее волокна не могут резонировать наподобие струн. По Бекеши, колебания распространяются на основной мембране в виде бегущей волны, но в то же время место наиболее интенсивного движения зависит от высоты звука. Высокие частоты вызывают вибрацию в ближнем конце мембраны; по мере повышения частоты вибрация сдвигается к овальному окошечку. Таким образом, было предложено новое объяснение активации различных по положению рецепторных элементов, но принцип связи высоты звука и акустической частоты через место раздражения сохранился [4]. 

       3.1 Локализация звука

       Способность определять направление, из которого исходит  звук, обусловлена бинауральным характером нашего слуха, т.е. тем, что мы воспринимаем звук двумя ушами. Локализацию звука в пространстве обозначают поэтому как бинауральный эффект. Люди, глухие на одно ухо, лишь с большим трудом определяют направление звука и вынуждены прибегать для этой цели к вращению головы и к различным косвенным показателям. Бинауральный эффект может быть фазовым и амплитудным. При фазовом бинауральном эффекте определение направления, из которого исходит звук, обусловлено разностью времен прихода одинаковых фаз звуковой волны к двум ушам. При амплитудном бинауральном эффекте определение направления звука обусловлено разностью громкостей, получающихся в двух ушах. Локализация звуков на основании фазового бинаурального эффекта возможна только в отношении звуков невысоких частот (не свыше 1500 Гц, а вполне отчетливо даже только до 800 Гц). Для звуков высоких частот локализация совершается на основе различия громкостей, получающихся в одном и другом ухе. Между фазовым и амплитудным бинауральным эффектами существуют определенные соотношения. Некоторые авторы (Р.Гартлей, Т.Фрей) считают, что механизмы фазовой и амплитудной локализации всегда действуют в какой-то мере совместно.

Информация о работе Слуховая сенсорная система