Автор: Пользователь скрыл имя, 26 Декабря 2012 в 23:16, курсовая работа
Цель работы: определить активные методы психодиагностики.
Задачи работы:
- дать характеристику методам обработки данных в психодиагностике
- провести обработку данных одного из активных методов психодиагностики.
Введение…………………………………………………………………………...3
1.Методы обработки данных в психодиагностике……………………………...6
1.1 Статистические методы проверки гипотезы………………………………...9
1.2 T-критерий Стьюдента………………………………………………………11
1.3 Корреляция и корреляционный анализ…………………………………….12
1.4 Методы кластерного и факторного анализа……………………………….17
2.Применение факторного анализа на практике……………………………………………21
2.1. Требования к организации факторного анализа……………………………………..21
2.2. Разработка психодиагностического теста с применением факторного анализа на примере опросника “Шестнадцать личностных факторов (16PF)” Р.Кэттелла………………………………………………………………………………………………………….26
Заключение……………………………………………………………………………………………………….30
Список использованной литературы……………………………………………………………....32
Приложение 1…………………………………………………………………………………………………..33
Критерий для независимых выборок.
Цель,предположения. t-критерий является наиболее часто используемым методом обнаружения различия между средними двух выборок. Например, t-критерий можно использовать для сравнения средних показателей группы пациентов, принимавших определенное лекарство, с контрольной группой, где принималось безвредное лекарство.Теоретически, t-критерий может применяться, даже если размеры выборок очень небольшие (например, 10; некоторые исследователи утверждают, что можно исследовать выборки меньшего размера), и если переменные нормально распределены (внутри групп), а дисперсии наблюдений в группах не слишком различны (см. также Элементарные понятия статистики). Предположение о нормальности можно проверить, исследуя распределение (например, визуально с помощью гистограммы) или применяя какой-либо критерий нормальности. Равенство дисперсий в двух группах можно проверить с помощью F критерия или использовать более устойчивый критерий Левена. Если условия применимости t-критерия не выполнены, следует использовать непараметрические альтернативы t-критерия
1.3 Корреляция и корреляционный анализ
ПОНЯТИЕ КОРРЕЛЯЦИИ.
Термин "корреляция" впервые
применил французский палеонтолог
Ж. Кювье, который вывел "закон
корреляции частей и органов животных"
(этот закон позволяет
Корреляционным называется исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи между несколькими (двумя и более) переменными. В психологии переменными могут выступать психические свойства, процессы, состояния и др.
"Корреляция" в прямом переводе означает "соотношение". Если изменение одной переменной сопровождается изменением другой, то можно говорить о корреляции этих переменных. Наличие корреляции двух переменных ничего не говорит о причинно-следственных зависимостях между ними, но дает возможность выдвинуть такую гипотезу. Отсутствие же корреляции позволяет отвергнуть гипотезу о причинно-следственной связи переменных. Различают несколько интерпретаций наличия корреляционной связи между двумя измерениями:
1. Прямая корреляционная связь. Уровень одной переменной непосредственно соответствует уровню другой. Примером является закон Хика: скорость переработки информации пропорциональна логарифму от числа альтернатив. Другой пример: корреляция высокой личностной пластичности и склонности к смене социальных установок.
2. Корреляция, обусловленная третьей переменной. Две переменные (а, с) связаны одна с другой через третью (в), не измеренную в ходе исследования. По правилу транзитивности, если есть R (а, Ь) и R (Ь, с), то R (а, с). Примером подобной корреляции является установленный психологами США факт связи уровня интеллекта с уровнем доходов. Если бы такое исследование проводилось в сегодняшней России, то результаты были бы иными. Очевидно, все дело в структуре общества. Скорость опознания изображения при быстром предъявлении и словарный запас испытуемых также положительно коррелируют. Скрытой переменной, обусловливающей эту корреляцию, является общий интеллект.
3. Случайная корреляция, не обусловленная никакой переменной.
4. Корреляция, обусловленная неоднородностью выборки. Представим себе, что выборка, которую мы будем обследовать, состоит из двух однородных групп. Например, мы хотим выяснить, связана ли принадлежность к полу с уровнем экстраверсии. Считаем, что "измерение" пола трудностей не вызывает, экстраверсию же измеряем с помощью опросником Айзенка ETI-1. У нас две группы: мужчины-математики и женщины-журналистки. Не удивительно, если мы получим линейную зависимость между полом и уровнем экстраверсии — интроверсии: большинство мужчин будут интровертами, большинство женщин — экстравертами (3, 4).
ВИДЫ КОРРЕЛЯЦИЙ
Виды корреляционной связи между измеренными переменными могут быть различны: так корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна, если с увеличением или уменьшением одной переменной, вторая переменная также растёт, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами (полиномиальная, гиперболическая). (5).
Если повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Чем выше личностная тревожность, тем больше риск заболеть язвой желудка. Возрастание громкости звука сопровождается ощущением повышения его тона.
Если рост уровня одной переменной сопровождается снижением уровня другой, то мы имеем дело с отрицательной корреляцией. По данным Зайонца, число детей в семье отрицательно коррелирует с уровнем их интеллекта. Чем боязливей особь, тем меньше у нее шансов занять доминирующее положение в группе.
Нулевой называется корреляция при отсутствии связи переменных. (2).
В психологии практически
нет примеров строго линейных связей
(положительных или
Примеры распределений испытуемых в пространстве двух признаков.
а) строгая положительная корреляция, б) сильная положительная корреляция, в) слабая положительная корреляция, г) нулевая корреляция, д) отрицательная корреляция, е) строгая отрицательная корреляция, ж) нелинейная корреляция, з) нелинейная корреляция.
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Графики корреляционных зависимостей строят по уравнениям следующих функций:
Yx= F(X) или Xy = F(Y),(формула 1)
которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Y и X.
Переменные X и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции. Представим соотношения между типами шкал, в которых могут быть измерены переменные X и Y и соответствующими мерами связи в виде таблицы:
Тип шкалы |
Мера связи | |
Переменная X |
Переменная Y | |
Интервальная или отношений |
Интервальная или отношений |
Коэффициент Пирсона rxy |
Ранговая, интервальная или отношений |
Ранговая, интервальная или отношений |
Коэффициент Спирмена ρxy |
Ранговая |
Ранговая |
Коэффициент Кендалла τ |
Дихотомическая |
Дихотомическая |
Коэффициент φ |
Дихотомическая |
Ранговая, |
Рангово-бисериальный Rrb |
Дихотомическая |
Интервальная или отношений |
Бисериальный Rбис |
Интервальная |
Ранговая |
Не разработан |
1.4 Методы кластерного и факторного анализа
Факторный анализ представляет
собой ветвь математической статистики.
Часто встречающееся ошибочное
представление о факторном
Появление факторного анализа обычно связывают с именем Ч.Спирмена. Началом его монументального труда, развившего психологическую теорию единственного генерального и некоторого числа характерных факторов, следует считать статью “Общий интеллект, объективно определенный и измеренный”, опубликованную в 1904 г. в “Американском психологическом журнале”. Конечно, эта работа была лишь началом его двухфакторной теории и излагалась еще не в терминах “факторов”. Возможно, более важной работой, особенно в статистическом плане, была статья К.Пирсона “On lines and planes of closest fit to systems of points in space”, опубликованная в 1901 г., в которой выдвигалась идея “метода главных осей”. Тем не менее, отцом факторного анализа заслуженно считается Ч.Спирмен, посвятивший последние 40 лет жизни развитию этой дисциплины.
В последующие 20 лет были достигнуты значительные успехи в разработке как психологических теорий, так и математического обоснования факторного анализа. Основной вклад принадлежит здесь С.Спирмену, С.Барту, К.Пирсону, Г.Томсону, Д.Максвеллу, Д.Гарнету и К.Холзингеру. Основные усилия ученых в это время были направлены на доказательства существования (или, наоборот, отсутствия) общей (неспецифической) одаренности (general ability), изучение ошибок от непредставительности выборки при оценке тетрадных разностей и разработку вычислительных процедур для поиска генерального фактора.
Началом современного периода в развитии факторного анализа, характерного подъемом творческой активности и оживленной дискуссией на страницах научных публикаций можно считать 1925 г.; реальные результаты относятся к 1930 г. К этому времени становится ясным, что факторы, получаемые с помощью двухфакторной теории Спирмена, не всегда адекватно описывают набор психологических тестов; впрочем, первое время экспериментаторы упорно отрицали наличие отклонений от теории и максимально сокращали число рассматриваемых групповых факторов. Теория генерального и специфических факторов Спирмена постепенно вытеснялась теорией групповых факторов, но методы этой последней были еще слишком трудоемкими, что затрудняло их практическое применение. Именно поэтому ряд исследователей направили свои усилия на поиск методов непосредственного извлечения набора факторов из матрицы корреляций между тестами; результатом этого явилось создание многофакторного анализа, понятие о котором ввел впервые Гарнетт.
Хотя термин “многофакторный анализ” был впервые введен Л.Терстоуном и хотя Терстоун, несомненно, больше, чем кто-либо другой, сделал для популяризации многофакторного анализа, не он тем не менее был первым, кто “сверг” двухфакторную теорию Спирмена, и не он открыл теорию многих факторов. И даже не центроидный метод позволил Терстоуну занять выдающееся место в истории факторного анализа. Терстоун ясно сознавал, что центроидный метод является лишь вычислительным компромиссом по отношению к методу главных компонент. Заслуга этого ученого состоит в том, что он обобщил критерий разности тетрад Спирмена и указал, что основой для определения числа общих факторов является ранг корреляционной матрицы. Проблема весьма упростилась в математическом аспекте, что способствовало дальнейшему развитию факторного анализа.
Приложения математических результатов, полученных в рамках факторного анализа, не ограничивались психологической наукой. Задача факторного анализа состоит в замене набора параметров меньшим числом некоторых категорий (“факторов”), являющихся линейной комбинацией исходных параметров. Удовлетворительным решением служит такая система факторов, которая достаточно адекватно передает информацию, имеющуюся в наборе параметров. Таким образом, главная цель факторного анализа – сжатие информации, экономное описание.
Одна и та же матрица корреляций может быть факторизована бесчисленным количеством способов. Возможно, именно неосведомленность об этом факте послужила причиной бурных дискуссий о “правильном”, “наилучшем” или “инвариантном” решении для данного набора параметров. Раз возможно бесконечное число одинаково “правильных” решений, то естественно возникает вопрос: как произвести выбор? Выбор типа нужного факторного решения производится на основании двух принципов: 1) статистической простоты; 2) содержательного психологического смысла (если речь идет о психологии). В свою очередь, каждый из этих принципов может быть по-разному интерпретирован; доказательством тому служит неоднозначное их применение различными школами факторного анализа.
Если иметь в виду чисто
статистический поход, то естественно
заменить исходный набор параметров
несколькими факторами, определяемыми
последовательно и таким
Информация о работе Методы обработки данных в психодиагностике