Операционные системы

Автор: Пользователь скрыл имя, 07 Января 2012 в 20:29, курс лекций

Описание работы

Операционная система в наибольшей степени определяет облик всей вычислительной системы в целом. Несмотря на это, пользователи, активно использующие вычислительную технику, зачастую испытывают затруднения при попытке дать определение операционной системе. Частично это связано с тем, что ОС выполняет две по существу мало связанные функции: обеспечение пользователю-программисту удобств посредством предоставления для него расширенной машины и повышение эффективности использования компьютера путем рационального управления его ресурсами.

Работа содержит 8 файлов

Технологические решения.doc

— 58.50 Кб (Открыть, Скачать)

Управление локальными ресурсами.doc

— 489.00 Кб (Скачать)

Архитектура операционной системы.doc

— 1.11 Мб (Открыть, Скачать)

Архитектура ПК.doc

— 624.50 Кб (Скачать)

 
   
Рис. 2.3. Архитектура многопроцессорного компьютера

    · Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

    Преимущество  в быстродействии многопроцессорных  и многомашинных вычислительных систем перед однопроцессорными очевидно.

    · Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе — то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рис. 2.4.

 
   
Рис. 2.4. Архитектура с параллельным процессором

    В современных машинах часто присутствуют элементы различных типов архитектурных  решений..

Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

 Центральный процессор

Центральный процессор (CPU, от англ. Central Processing Unit) — это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

    Центральный процессор в общем случае содержит в себе:

  • арифметико-логическое устройство;
  • шины данных и шины адресов;
  • регистры;
  • счетчики команд;
  • кэш — очень быструю память малого объема (от 8 до 512 Кбайт);
  • математический сопроцессор чисел с плавающей точкой.

    Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему — тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

    Микропроцессор  Intel Pentium 4 — наиболее совершенный и мощный процессор выпуска 2001 г. с тактовой частотой до 2 Гигагерц, представлен на рисунке 2.5 примерно в натуральную величину. Он предназначен для работы приложений, требующих высокой производительности процессора, таких, как передача видео и звука по Интернет, создание видео-материалов, распознавание речи, обработка трехмерной графики, игры.

 
   
Рис. 2.5. Микропроцессор Pentium 4. Вид сверху (слева) и вид снизу (справа)

    В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.

Память.

    Память  компьютера построена из двоичных запоминающих элементов — битов, объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.

    Байты могут объединяться в ячейки, которые  называются также словами. Для каждого компьютера характерна определенная длина слова — два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово). Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации. Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:

Байт 0 Байт 1 Байт 2 Байт 3 Байт 4 Байт 5 Байт 6 Байт 7
ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО
СЛОВО СЛОВО
ДВОЙНОЕ СЛОВО

    Широко  используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в последнее время, Терабайт и Петабайт.

    Современные компьютеры имеют много разнообразных  запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации.  Различают два основных вида памяти — внутреннюю и внешнюю.

    В состав внутренней памяти входят оперативная память, кэш-память и специальная память.

1.  Оперативная память

Оперативная память (ОЗУ, англ. RAM, Random Access Memory — память с произвольным доступом) — это быстрое запоминающее устройство не очень большого объёма, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, обрабатываемых этими программами.

    Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается, все, что находилось в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой — это означает, что каждый байт памяти имеет свой индивидуальный адрес.

    Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

    Обычно  ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за токов утечки такие конденсаторы быстро разряжаются, и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (Refresh Memory).  Микросхемы SDRAM имеют ёмкость 16 — 256 Мбит и более. Они устанавливаются в корпуса и собираются в модули памяти.

    Большинство современных компьютеров комплектуются  модулями типа DIMM (Dual-In-line Memory Module — модуль памяти с двухрядным расположением микросхем).  В компьютерных системах на самых современных процессорах используются высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM.

 
   
Рис. 2.6. Микросхемы памяти RIMM (сверху) и DIMM (снизу)

    Модули  памяти характеризуются такими параметрами, как объем —(16, 32, 64, 128, 256 или 512 Мбайт), число микросхем, паспортная частота(100 или 133 МГц), время доступа к данным (6 или 7 наносекунд) и число контактов (72, 168 или 184).   В 2001 г. начинается выпуск модулей памяти на 1 Гбайт и опытных образцов модулей на 2 Гбайта.

2.  Кэш-память

Кэш (англ. cache), или сверхоперативная память — очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

    Кэш-памятью  управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

    Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM  (SDRAM).   Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

3.  Специальная память

    К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Постоянная  память (ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом "зашивается" в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.
Перепрограммируемая постоянная память (Flash Memory) — энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

    Прежде  всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

    Важнейшая микросхема постоянной или Flash-памяти — модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой строны — важный модуль любой операционной системы.

BIOS (Basic Input/Output System — базовая система ввода-вывода) — совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера  и  загрузки операционной системы в оперативную память.

    Разновидность постоянного ЗУ — CMOS RAM.

CMOS RAM — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.

 
   
Интегральные схемы BIOS и CMOS

Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Set-up — устанавливать, читается "сетап"). Для хранения графической информации используется видеопамять.

Видеопамять (VRAM) — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.

    Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

    В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнито-оптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.

1.  Накопители на гибких магнитных дисках

Гибкий  диск (англ. floppy disk), или лискета, — носитель небольшого объема информации, представляющий собой гибкий пластиковый диск в защитной оболочке. Используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.
 

 
    Устройство дискеты

    Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным  окислом и помещенной в пластиковую  упаковку, на внутреннюю поверхность  которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.  
   
   
 

    Способ  записи двоичной информации на магнитной  среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

    Информация  записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

 
Рис. 2.7. Поверхность 
магнитного диска

    В настоящее время наибольшее распространение  получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

    Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive), автоматически в нем фиксируется, после чего механизм накопителя раскручивается до частоты вращения 360 мин-1. В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

    В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

2.  Накопители на жестких магнитных дисках

    Если  гибкие диски — это средство переноса данных между компьютерами, то жесткий диск — информационный склад компьютера.

Накопитель  на жёстких магнитных  дисках (англ. HDD — Hard Disk Drive) или винчестерский накопитель — это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины — платтеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации — программ и данных.
 

 
Рис. 2.8. Винчестерский накопитель  
со снятой крышкой корпуса

    Как и у дискеты, рабочие поверхности  платтеров разделены на кольцевые  концентрические дорожки, а дорожки  — на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных.   При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух.   Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

    Винчестерские накопители имеют очень большую  ёмкость: от 10 до 100 Гбайт. У современных  моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 60 Мбайт/с. В отличие от дискеты, жесткий диск вращается непрерывно. Все современные накопители снабжаются встроенным кэшем (обычно 2 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска.

3.  Накопители на компакт-дисках

    Здесь носителем информации является CD-ROM (Сompact Disk Read-Only Memory - компакт диск, из которого можно только читать).

    CD-ROM представляет собой прозрачный  полимерный диск диаметром 12 см  и толщиной 1,2 мм, на одну сторону  которого напылен светоотражающий  слой алюминия, защищенный от  повреждений слоем прозрачного  лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

    Информация  на диске представляется в виде последовательности впадин (углублений в диске) и выступов (их уровень соответствует поверхности диска), расположеных на спиральной дорожке, выходящей из области вблизи оси диска. На каждом дюйме (2,54 см) по радиусу диска размещается 16 тысяч витков спиральной дорожки. Для сравнения — на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек. Емкость CD достигает 780 Мбайт. Информация наносится на диск при его изготовлении и не может быть изменена.

    CD-ROM обладают высокой удельной информационной  емкостью, что позволяет создавать  на их основе справочные системы  и учебные комплексы с большой  иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Cчитывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске. CD-ROM просты и удобны в работе, имеют низкую удельную стоимость хранения данных, практически не изнашиваются, не могут быть поражены вирусами, c них невозможно случайно стереть информацию.

    В отличие от магнитных дисков, компакт-диски  имеют не множество кольцевых  дорожек, а одну — спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей лазерной головки к краю диска.

 
   
Рис. 2.9. Накопитель CD-ROM

    Для работы с CD-ROM нужно подключить к  компьютеру накопитель CD-ROM (рис. 2.9), преобразующий последовательность углублений и выступов на поверхности CD-ROM в последовательность двоичных сигналов. Для этого используется считывающая головка с микролазером и светодиодом. Глубина впадин на поверхности диска равна четверти длины волны лазерного света. Если в двух последовательных тактах считывания информации луч света лазерной головки переходит с выступа на дно впадины или обратно, разность длин путей света в этих тактах меняется на полуволну, что вызывает усиление или ослабление совместно попадающих на светодиод прямого и отраженного от диска света.

    Если  в последовательных тактах считывания длина пути света не меняется, то и состояние светодиода не меняется. В результате ток через светодиод образует последовательность двоичных электрических сигналов, соответствующих сочетанию впадин и выступов на дорожке.

 
                  Профиль дорожки CD-ROM

>        Различная длина оптического пути луча света в двух последовательных тактах считывания информации соответствует двоичным единицам. Одинаковая длина соответствует двоичным нулям.

    Сегодня почти все персональные компьютеры имеют накопитель CD-ROM. Но многие мультимедийные интерактивные программы слишком велики, чтобы поместиться на одном CD. На смену технологии СD-ROM стремительно идет технология цифровых видеодисков DVD. Эти диски имеют тот же размер, что и обычные CD, но вмещают до 17 Гбайт данных, т.е. по объему заменяют 20 стандартных дисков CD-ROM. На таких дисках выпускаются мультимедийные игры и интерактивные видеофильмы отличного качества, позволяющие зрителю просматривать эпизоды под разными углами камеры, выбирать различные варианты окончания картины, знакомиться с биографиями снявшихся актеров, наслаждаться великолепным качеством звука. 
 

4.  Записывающие оптические и магнитооптические накопители

    · Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски емкостью 650 Мбайт. В дисках CD-R отражающий слой выполнен из золотой пленки. Между этим слоем и поликарбонатной основой расположен регистрирующий слой из органического материала, темнеющего при нагревании. В процессе записи лазерный луч нагревает выбранные точки слоя, которые темнеют и перестают пропускать свет к отражающему слою, образуя участки, аналогичные впадинам. Накопители CD-R, благодаря сильному удешевлению, приобретают все большее распространение.

 
   
Рис.2.10. Накопитель CD-MO

    · Накопитель на магнито-оптических компакт-дисках СD-MO (Compact Disk — Magneto Optical) (рис. 2.10). Диски СD-MO можно многократно использовать для записи. Ёмкость от 128 Мбайт до 2,6 Гбайт.

    · Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски. Ёмкость 650 Мбайт.

    · Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.  
 

5.  Накопители на магнитной ленте (стримеры) и накопители на сменных дисках

Стример (англ. tape streamer) — устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1 — 2 Гбайта и больше.
 

 
   
    Рис. 2.11. Накопитель  
    на сменных дисках

    Стримеры  позволяют записать на небольшую  кассету с магнитной лентой огромное количество информации. Встроенные в  стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

    Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

    В последнее время всё шире используются накопители на сменных дисках, которые позволяют не только увеличивать объём хранимой информации, но и переносить информацию между компьютерами. Объём сменных дисков — от сотен Мбайт до нескольких Гигабайт.

Аудиоадаптер.

Аудиоадаптер (Sound Blaster или звуковая плата) это специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона, наушников, динамиков, встроенного синтезатора и другого оборудования.
 

    Аудиоадаптер  содержит в себе два преобразователя  информации:

  • аналого-цифровой, который преобразует непрерывные (то есть, аналоговые) звуковые сигналы (речь, музыку, шум) в цифровой двоичный код и записывает его на магнитный носитель;
  • цифро-аналоговый, выполняющий обратное преобразование сохранённого в цифровом виде звука в аналоговый сигнал, который затем воспроизводится с помощью акустической системы, синтезатора звука или наушников.

    Профессиональные  звуковые платы позволяют выполнять сложную обработку звука, обеспечивают стереозвучание, имеют собственное ПЗУ с хранящимися в нём сотнями тембров звучаний различных музыкальных инструментов. Звуковые файлы обычно имеют очень большие размеры. Так, трёхминутный звуковой файл со стереозвучанием занимает примерно 30 Мбайт памяти. Поэтому платы Sound Blaster, помимо своих основных функций, обеспечивают автоматическое сжатие файлов.

    Область применения звуковых плат — компьютерные игры, обучающие программные системы, рекламные презентации, "голосовая почта" (voice mail) между компьютерами, озвучивание различных процессов, происходящих в компьютерном оборудовании, таких, например, как отсутствие бумаги в принтере и т.п.

Видеоадаптер и графический акселератор.

Видеоадаптер — это электронная плата, которая обрабатывает видеоданные (текст и графику) и управляет работой дисплея. Содержит видеопамять, регистры ввода вывода и модуль BIOS. Посылает в дисплей сигналы управления яркостью лучей и сигналы развертки изображения.
 

    Наиболее  распространенный видеоадаптер на сегодняшний день — адаптер SVGA (Super Video Graphics Array — супервидеографический массив), который может отображать на экране дисплея 1280х1024 пикселей при 256 цветах и 1024х768 пикселей при 16 миллионах цветов.

    С увеличением числа приложений, использующих сложную графику и видео, наряду с традиционными видеоадаптерами  широко используются разнообразные устройства компьютерной обработки видеосигналов:

 
   
Рис. 2.12. Графический акселератор

    · Графические акселераторы (ускорители) — специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.

    · Фрейм-грабберы, которые позволяют отображать на экране компьютера видеосигнал от видеомагнитофона, камеры, лазерного проигрывателя и т. п., с тем, чтобы захватить нужный кадр в память и впоследствии сохранить его в виде файла.

    · TV-тюнеры — видеоплаты, превращающие компьютер в телевизор. TV-тюнер позволяет выбрать любую нужную телевизионную программу и отображать ее на экране в масштабируемом окне. Таким образом можно следить за ходом передачи, не прекращая работу.

Клавиатура

Клавиатура компьютера — устройство для ввода информации в компьютер и подачи управляющих сигналов. Содержит стандартный набор клавиш печатной машинки и некоторые дополнительные клавиши — управляющие и функциональные клавиши, клавиши управления курсором и малую цифровую клавиатуру.
 

    Все символы, набираемые на клавиатуре, немедленно отображаются на мониторе в позиции  курсора (курсор — светящийся символ на экране монитора, указывающий позицию, на которой будет отображаться следующий вводимый с клавиатуры знак).

    Наиболее распространена сегодня клавиатура c раскладкой клавиш QWERTY (читается "кверти"), названная так по клавишам, расположенным в верхнем левом ряду алфавитно-цифровой части клавиатуры:

 
   
Рис. 2.13. Клавиатура компьютера

    Такая клавиатура имеет 12 функциональных клавиш, расположенных вдоль верхнего края. Нажатие функциональной клавиши приводит к посылке в компьютер не одного символа, а целой совокупности символов. Функциональные клавиши могут программироваться пользователем. Например, во многих программах для получения помощи (подсказки) задействована клавиша F1, а для выхода из программы — клавиша F10.

    Управляющие клавиши имеют следующее назначение:

  • Enter — клавиша ввода;
  • Esc (Escape — выход) клавиша для отмены каких-либо действий, выхода из программы, из меню и т.п.;
  • Ctrl и Alt — эти клавиши самостоятельного значения не имеют, но при нажатии совместно с другими управляющими клавишами изменяют их действие;
  • Shift (регистр) — обеспечивает смену регистра клавиш (верхнего на нижний и наоборот);
  • Insert (вставлять) — переключает режимы вставки (новые cимволы вводятся посреди уже набранных, раздвигая их) и замены (старые символы замещаются новыми);
  • Delete (удалять) — удаляет символ с позиции курсора;
  • Back Space или — удаляет символ перед курсором;
  • Home и End — обеспечивают перемещение курсора в первую и последнюю позицию строки, соответственно;
  • Page Up и Page Down — обеспечивают перемещение по тексту на одну страницу (один экран) назад и вперед, соответственно;
  • Tab клавиша табуляции, обеспечивает перемещение курсора вправо сразу на несколько позиций до очередной позиции табуляции;
  • Caps Lock — фиксирует верхний регистр, обеспечивает ввод прописных букв вместо строчных;
  • Print Screen — обеспечивает печать информации, видимой в текущий момент на экране.
  • Длинная нижняя клавиша без названия — предназначена для ввода пробелов.
  • Клавиши , , и служат для перемещения курсора вверх, вниз, влево и вправо на одну позицию или строку.

    Малая цифровая клавиатура используется в двух режимах — ввода чисел и управления курсором. Переключение этих режимов осуществляется клавишей Num Lock.

    Клавиатура  содержит встроенный микроконтроллер (местное устройство управления), который выполняет следующие функции:

  • последовательно опрашивает клавиши, считывая введенный сигнал и вырабатывая двоичный скан-код клавиши;
  • управляет световыми индикаторами клавиатуры;
  • проводит внутреннюю диагностику неисправностей;
  • осуществляет взаимодействие с центральным процессором через порт ввода-вывода клавиатуры.

    Клавиатура  имеет встроенный буфер — промежуточную память малого размера, куда помещаются введённые символы. В случае переполнения буфера нажатие клавиши будет сопровождаться звуковым сигналом — это означает, что символ не введён (отвергнут). Работу клавиатуры поддерживают специальные программы, "зашитые" в BIOS, а также драйвер клавиатуры, который обеспечивает возможность ввода русских букв, управление скоростью работы клавиатуры и др.

Видеосистема компьютера.

    Видеосистема  компьютера состоит из трех компонент:

  • монитор (называемый также дисплеем);
  • видеоадаптер;
  • программное обеспечение (драйверы видеосистемы).

    Видеоадаптер посылает в монитор сигналы управления яркостью лучей и синхросигналы строчной и кадровой развёрток. Монитор преобразует эти сигналы в зрительные образы. А программные средства обрабатывают видеоизображения — выполняют кодирование и декодирование сигналов, координатные преобразования, сжатие изображений и др.

Монитор — устройство визуального отображения информации (в виде текста, таблиц, рисунков, чертежей и др.).
 
 

    Подавляющее большинство мониторов сконструированы  на базе электронно-лучевой трубки (ЭЛТ), и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами. 

     

1.  Монитор на базе электронно-лучевой трубки

    Основной  элемент дисплея — электронно-лучевая трубка. Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором — специальным веществом, способным излучать свет при попадании на него быстрых электронов.

 
   
Рис. 2.15. Схема электронно-лучевой трубки

    Люминофор наносится в виде наборов точек трёх основных цветов — красного, зелёного и синего. Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра.

 
Рис. 2.16. Пиксельные триады  

     

    Наборы  точек люминофора располагаются  по треугольным триадам. Триада образует пиксел — точку, из которых формируется изображение (англ. pixel — picture element, элемент картинки).  
   
   
 

    Расстояние  между центрами пикселов называется точечным шагом монитора. Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,24 мм. При таком шаге глаз человека воспринимает точки триады как одну точку "сложного" цвета.

    На  противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки "нацелены" на один и тот же пиксел, но каждая из них излучает поток электронов в сторону "своей" точки люминофора. Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны. Перед экраном на пути электронов ставится маска — тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

 
   
Рис. 2.17. Ход электронного пучка по экрану

    Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет  сигнал, поступающий с видеоадаптера.

    На  ту часть колбы, где расположены  электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д.  
 

    Количество  отображённых строк в секунду  называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки. Последняя не должна быть ниже 85 Гц, иначе изображение будет мерцать.

2.  Жидкокристаллические мониторы

    Все шире используются наряду с традиционными ЭЛТ-мониторами. Жидкие кристаллы — это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

    Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между  двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу — сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

    Активные  матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Экран при этом разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Количество таких ячеек по широте и высоте экрана называют разрешением экрана. Современные ЖК-мониторы имеют разрешение 642х480, 1280х1024 или 1024х768. Таким образом, экран имеет от 1 до 5 млн точек, каждая из которых управляется собственным транзистором. По компактности такие мониторы не знают себе равных. Они занимают в 2 — 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче; потребляют гораздо меньше электроэнергии и не излучают электромагнитных волн, воздействующих на здоровье людей.  
 

3.  Сенсорный экран 

    Общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Этим выбирается необходимый режим из меню, показанного на экране монитора. (Меню — это выведенный на экран монитора список различных вариантов работы компьютера, по которому можно сделать конкретный выбор.) Сенсорными экранами оборудуют рабочие места операторов и диспетчеров, их используют в информационно-справочных системах и т.д. 

Принтер, плоттер, сканер.

Принтер — печатающее устройство. Осуществляет вывод из компьютера закодированной информации в виде печатных копий текста или графики.
 

    Существуют  тысячи наименований принтеров. Но основных видов принтеров три: матричные, лазерные и струйные.

 
Матричный символ

    · Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.  
 

    · Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти "образ" страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.

    После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок — тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и "вплавляется" в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.

    · Струйные принтеры генерируют символы в виде последовательности чернильных точек. Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов — ярко-голубого, пурпурного, желтого и черного.

    Принтер связан с компьютером посредством кабеля принтера, один конец которого вставляется своим разъёмом в гнездо принтера, а другой — в порт принтера компьютера. Порт — это разъём, через который можно соединить процессор компьютера с внешним устройством.

    Каждый  принтер обязательно имеет свой драйвер — программу, которая способна переводить (транслировать) стандартные команды печати компьютера в специальные команды, требующиеся для каждого принтера.

Плоттер (графопостроитель) — устройство, которое чертит графики, рисунки или диаграммы под управлением компьютера.
 

 

    Плоттеры  используются для получения сложных  конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.

    Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.  
 

    Плоттеру, так же, как и принтеру, обязательно  нужна специальная программа  — драйвер, позволяющая прикладным программам передавать ему инструкции: поднять и опустить перо, провести линию заданной толщины и т.п.

Сканер — устройство для ввода в компьютер графических изображений. Создает оцифрованное изображение документа и помещает его в память компьютера.
 

    Если  принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры, которые прокатывают по поверхности документа рукой, и планшетные сканеры, по внешнему виду напоминающие копировальные машины.

    Если  при помощи сканера  вводится текст, компьютер  воспринимает его  как картинку, а  не как последовательность символов. Для преобразования такого графического текста в обычный символьный формат используют программы оптического распознавания образов.

Модем и факс-модем.

Модем — устройство для передачи компьютерных данных на большие расстояния по телефонным линиям связи.
 

    Цифровые  сигналы, вырабатываемые компьютером, нельзя напрямую передавать по телефонной сети, потому что она предназначена для передачи человеческой речи — непрерывных сигналов звуковой частоты.

    Модем обеспечивает преобразование цифровых сигналов компьютера в переменный ток  частоты звукового  диапазона — этот процесс называется модуляцией, а также обратное преобразование, которое называется демодуляцией. Отсюда название устройства: модеммодулятор/демодулятор.

 
   
Рис. 2.24. Схема реализации модемной связи

    Для осуществления связи один модем  вызывает другой по номеру телефона, а  тот отвечает на вызов. Затем модемы посылают друг другу сигналы, согласуя подходящий им обоим режим связи. После этого передающий модем начинает посылать модулированные данные с согласованными скоростью (количеством бит в секунду) и форматом. Модем на другом конце преобразует полученную информацию в цифровой вид и передает её своему компьютеру. Закончив сеанс связи, модем отключается от линии. 

  

    Управление  модемом осуществляется с помощью специального коммутационного программного обеспечения.

    Модемы  бывают внешние, выполненные в виде отдельного устройства, и внутренние, представляющие собой электронную плату, устанавливаемую внутри компьютера. Почти все модемы поддерживают и функции факсов.  
 

    Факс — это устройство факсимильной передачи изображения по телефонной сети. Название "факс" произошло от слова "факсимиле" (лат. fac simile — сделай подобное), означающее точное воспроизведение графического оригинала (подписи, документа и т.д.) средствами печати.   Модем, который может передавать и получать данные как факс, называется факс-модемом.

Манипуляторы.

    Манипуляторы (мышь, джойстик и др.) — это специальные устройства, которые используются для управления курсором.

    Мышь имеет вид небольшой коробки, полностью умещающейся на ладони. Мышь связана с компьютером кабелем через специальный блок — адаптер, и её движения преобразуются в соответствующие перемещения курсора по экрану дисплея. В верхней части устройства расположены управляющие кнопки (обычно их три), позволяющие задавать начало и конец движения, осуществлять выбор меню и т.п.

    Джойстик — обычно это стержень-ручка, отклонение которой от вертикального положения приводит к передвижению курсора в соответствующем направлении по экрану монитора. Часто применяется в компьютерных играх. В некоторых моделях в джойстик монтируется датчик давления. В этом случае, чем сильнее пользователь нажимает на ручку, тем быстрее движется курсор по экрану дисплея.

    Трекбол — небольшая коробка с шариком, встроенным в верхнюю часть корпуса. Пользователь рукой вращает шарик и перемещает, соответственно, курсор. В отличие от мыши, трекбол не требует свободного пространства около компьютера, его можно встроить в корпус машины.

    Дигитайзер — устройство для преобразования готовых изображений (чертежей, карт) в цифровую форму. Представляет собой плоскую панель — планшет, располагаемую на столе, и специальный инструмент — перо, с помощью которого указывается позиция на планшете. При перемещении пера по планшету фиксируются его координаты в близко расположенных точках, которые затем преобразуются в компьютере в требуемые единицы измерения. 

Как устроен компьютер?

    Рассмотрим  устройство компьютера на примере самой  распространенной компьютерной системы — персонального компьютера. Персональным компьютером (ПК) называют сравнительно недорогой универсальный микрокомпьютер, рассчитанный на одного пользователя. Персональные компьютеры обычно проектируются на основе принципа открытой архитектуры.

Принцип открытой архитектуры заключается в следующем:
  • Регламентируются и стандартизируются только описание принципа действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Таким образом, компьютер можно собирать из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями.
  • Компьютер легко расширяется и модернизируется за счёт наличия внутренних расширительных гнёзд, в которые пользователь может вставлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей машины в соответствии со своими личными предпочтениями.
 

    Упрощённая  блок-схема, отражающая основные функциональные компоненты компьютерной системы в  их взаимосвязи, изображена на рисунке 2.26.

 
   
Рис. 2.26. Общая структура персонального компьютера с подсоединенными периферийными устройствами

    Для того, чтобы соединить друг с другом различные устройства компьютера, они должны иметь одинаковый интерфейс (англ. interface от inter — между, и face — лицо).

Интерфейс — это средство сопряжения двух устройств, в котором все физические и логические параметры согласуются между собой.
 

    Если  интерфейс является общепринятым, например, утверждённым на уровне международных  соглашений, то он называется стандартным.

    Каждый  из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа —  адресной, управляющей или шиной данных.

    Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:

    Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры, кроме этого, осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора. 

Порты устройств представляют собой некие электронные схемы, содержащие один или несколько регистров ввода-вывода и позволяющие подключать периферийные устройства компьютера к внешним шинам микропроцессора.
 
 

    Портами также называют устройства стандартного интерфейса: последовательный, параллельный и игровой порты (или интерфейсы).

Последовательный  порт обменивается данными с процессором побайтно, а с внешними устройствами — побитно. Параллельный порт получает и посылает данные побайтно.
 

    К последовательному порту обычно подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства — принтер и сканер. Через игровой порт подсоединяется джойстик. Клавиатура и монитор подключаются к своим специализированным портам, которые представляют собой просто разъёмы.

    Основные  электронные компоненты, определяющие архитектуру процессора, размещаются  на основной плате компьютера, которая называется системной или материнской (MotherBoard). А контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения (DаughterBoard — дочерняя плата) и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot — щель, паз).

Основные блоки входят в состав компьютера.

    Современный персональный компьютер состоит из нескольких основных конструктивных компонент:

  • системного блока;
  • монитора;
  • клавиатуры;
  • манипуляторов.

    В системном блоке размещаются:

  • блок питания;
  • накопитель на жёстких магнитных дисках;
  • накопитель на гибких магнитных дисках;
  • системная плата;
  • платы расширения;
  • накопитель CD-ROM;
  • и др.

    Корпус  системного блока может иметь  горизонтальную (DeskTop) или вертикальную (Tower — башня) компоновку. Типичный системный  блок со снятой крышкой корпуса —  на рис. 2.28.

 
Рис. 2.28. Системный блок со снятой крышкой  корпуса  
 
1 — Системная плата. 
2 — Разъём дополнительного второго процессора. 
3 — Центральный процессор с радиатором для отвода тепла. 
4 — Разъёмы оперативной памяти. 
5 — Накопитель на гибких магнитных дисках. 
6 — Накопитель CD-ROM. 
7 — Сетевая карта. 
8 — Графический акселератор. 
9 — Блок питания, преобразующий переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.
 

Системная плата.

    Системная плата является основной в системном блоке. Она содержит компоненты, определяющие архитектуру компьютера:

  • центральный процессор;
  • постоянную (ROM) и оперативную (RAM) память, кэш-память;
  • интерфейсные схемы шин;
  • гнёзда расширения;
  • обязательные системные средства ввода-вывода и др.

    Системные платы исполняются на основе наборов  микросхем, которые называются чипсетами (ChipSets). Часто на системных платах устанавливают и контроллеры дисковых накопителей, видеоадаптер, контроллеры портов и др. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

 
Рис. 2.29. Системная плата компьютера класса Pentium
1 — Разъём под центральный процессор; 
2 — Дополнительный кэш объёмом 256 Кбайт; 
3 — Разъём под дополнительный кэш; 
4 — Контроллеры внешних устройств; 
5 — Разъёмы накопителей на жёстких магнитных дисках; 
6 — Разъёмы под оперативную память, 4 планки; 
7 — Коннектор (соединитель) клавиатуры и мыши; 
8 — Микросхема, обслуживающая флоппи-дисковод, последовательные порты и параллельный порт; 
9 — Разъёмы 32-битной шины (для видеокарты, карты Интернет и др.); 
10 — Перезаписываемая BIOS (Flash-память); 
11 — Мультимедийная шина; 
12 — Разъёмы 16-битной шины.
 

"Виртуальный компьютер"

Виртуальный компьютер — специальная программа, запускаемая в ОС Linux и моделирующая физический компьютер на основе процессора Intel x86. Монитором виртуального компьютера является окно графической оболочки X Window, в которое производится вывод информации. На рис. 18.1 видно, как выглядит Windows NT 4.0, работающая на виртуальном компьютере, запущенном из ОС Linux.

Рис. 18.1. Windows NT 4.0, запущенная на виртуальном компьютере с базовой ОС Linux  
(щелкните по рисунку для просмотра)

Виртуальный компьютер "строится" из следующего набора виртуальных устройств:

  • виртуальные IDE и SCSI жесткие диски;
  • виртуальный CD-ROM;
  • стандартный дисковод гибких дисков;
  • контроллер жестких IDE–дисков Intel 82371 PCI Bus Master, поддерживающий два первичных (primary) и два вторичных (secondary) IDE-диска;
  • адаптер SCSI-дисков, совместимый с BusLogic BT-958;
  • стандартный PCI графический адаптер,
  • стандартная 101/102-клавишная клавиатура, PS/2-совместимая мышь;
  • сетевая карта AMD PCNET Family Ethernet adapter (PCI-ISA);
  • последовательные порты COM1-COM4,
  • параллельные порты LPT1-LPT2;
  • звуковая карта, совместимая с Sound Blaster 16.

Этот  набор виртуальных устройств  отличается от набора устройств реального  компьютера, на котором запускается  виртуальная машина (за исключением  некоторых устройств, например, процессора и клавиатуры), и не зависит от последнего. Если операционная система устанавливается непосредственно внутри виртуального компьютера, то в процессе установки все эти устройства определяются корректно. При "включении питания" виртуального компьютера (что делается с помощью специальной кнопки Power On/Off в меню программы-эмулятора), видно, как BIOS осуществляет тестирование "аппаратной части" и даже, как и на физическом компьютере, можно войти в программу Setup, чтобы задать или изменить настройки BIOS. На виртуальный компьютер можно установить любую операционную систему и работать с ней обычным образом.

Естественно, что две ОС, одновременно работающие на одном физическом компьютере, так  или иначе борются за реальные ресурсы базового компьютера, а поэтому  требования к нему достаточно высоки. Фирма-разработчик формулирует эти требования следующим образом:

  • Pentium II 266MHz или выше, с ОЗУ как минимум 64 Mбайт;
  • видео-адаптер, поддерживаемый сервером XFree86 (для получения всех преимуществ полноэкранного режима);

в качестве базовой операционной системы может использоваться ОС Linux с ядром 2.0.32 или выше, библиотекой glibc версии от glibc2 до glibc6 (с glibc1 не работает), для SMP-систем ядро должно быть версии 2.2.0 или выше;

Виртуальный компьтер.doc

— 1.12 Мб (Открыть, Скачать)

Классификация ОС.doc

— 79.50 Кб (Открыть, Скачать)

ОС реального времени.doc

— 70.00 Кб (Открыть, Скачать)

Понятие ОС.doc

— 46.50 Кб (Открыть, Скачать)

Информация о работе Операционные системы