Автор: Пользователь скрыл имя, 08 Ноября 2011 в 06:40, реферат
Давным-давно, в 1945 г. — когда вычислительная техника уже была электронной, но ещё релейно-ламповой (хотя британцы уже во Второй Мировой Войне использовали германиевые диоды) — руководство американской компании BellLabs основало группу под руководством Уильяма Шокли по исследованию полупроводниковой замены вакуумным лампам, что и произошло через 2 года с изобретением транзистора. А в 1948 г. «transistron» был независимо изобретён работающими во Франции двумя немецкими физиками — ХэрбертомМатаре и ХайнрихомВелкером.
Разбор нанометров
Самое время разобраться, что понимается под технормой. Попытка дать определение этому важнейшему термину не зря поставлена почти в конец статьи. Когда-то под технормой понимался самый малый по длине или ширине элемент, формируемый данным техпроцессом. Когда технорма стала меньше длины волны, появилось два отдельных определения — для регулярных чипов (память, программируемые матрицы, фотодатчики — в т. ч. со встроенными логическими блоками) и нерегулярных (сложная логика, в т. ч. содержащая кэши, буферы и т. п.). Для первых — минимальный полушаг линейно-регулярной структуры, для вторых — минимальная ширина дорожки нижнего уровня металла (что примерно вдвое длиннее затвора транзистора).
Однако с недавних пор и это перестало иметь значение. Дело в том, что число фабрик, производящих микросхемы по самым современным техпроцессам, неуклонно снижается. При этом ни одна фирма, производящая оборудование для производства полупроводников, их самих не делает — все производители микросхем покупают станки у примерно одних (тоже не очень многочисленных) фирм. Очевидно, собираемые из станков и настроек техпроцессы на фабах получились бы как две капли воды похожи, но это имеет смысл лишь для нескольких фабов одной компании, а таких компаний в мире — единицы. Так что каждая фирма пытается удовлетворить заказчиков чем-то особенным, выпускаемым на почти стандартном оборудовании. И вот тут под нож пошли те самые нанометры…
¹ — Оптимизация по энергоэффективности ² — С иммерсионной литографией ³ — С иммерсионной литографией и низкопроницаемыми межслойными диэлектриками |
В этой таблице указана
площадь (в кв. микронах) 6-транзисторной
ячейки СОЗУ, которой обычно меряют
плотность размещения транзисторов
для логических микросхем. (Это само
по себе любопытно, учитывая, что СОЗУ
используются в разнообразных регистрах,
буферах и кэшах — т. е. одно-,
а чаще даже двухмерно регулярных
схемах, а не в синтезированной
логике, почти не имеющей повторений.
И тем не менее…) А самое главное,
что это всё — «45-
Более того, ITRS (International Technology Roadmap for Semiconductors — международный технологический план для [производителей] полупроводников, составляемый экспертами из крупнейших фирм и их ассоциаций) регулярно выпускает рекомендации по основным параметрам техпроцессов для микроэлектронных компаний, т. е. для самих себя. А теперь посмотрим, как эти рекомендации соблюдаются:
Рекомендации ITRS для логики в 2003 г. в сравнении с фактически найденными параметрами фирмой Chipworks, специализирующейся на «инженерной разборке» микросхем. |
Краткий ответ — никак. Дело дошло до того, что на недавнем форуме IEDM технорму признались считать маркетинговым понятием — т. е. не более чем цифрой для рекламы. Фактически, сегодня сравнивать техпроцессы по нанометрам стало не более разумно, чем 10 лет назад (после выхода Pentium 4) продолжать сравнивать производительность ЦП (пусть даже и одной программной архитектуры) по гигагерцам.
Разница в техпроцессах при одинаковых технормах активно влияет и на цену чипов. Например, AMD использовала разработанный совместно с IBM 65-нанометровый процесс с SOI-пластинами, двойными подзатворными оксидами, имплантированным в кремний германием, двумя видами напряжённых слоёв (сжимающим и растягивающим) и 10 слоями меди для межсоединений. 65-нанометровый техпроцесс у Intel включает относительно дешёвую пластину из цельного кремния, диэлектрик одинарной толщины, имплантированный в кремний германий, один растягивающий слой и 8 слоёв меди. По примерным подсчётам Intel потребует для своего процесса 31 маску, а AMD — 42.
В результате из-за значительной
разницы в технологиях
По докладам на IEDM
можно составить сводную
dd
) давно остановилось
на 1 вольте (потребление транзистором
энергии и без этого
Gate
), шаг затвора с контактом (Contacted Gate Pitch) и площадь ячейки СОЗУ (SRAM Cell Size).
Тут надо указать, что кэши изготовленного с той же технормой ЦП той же фирмы имеют площадь ячейки на 5–15 % больше указанной в случае L2 и L3, и на 50–70 % больше для L1. Дело в том, что сообщаемые на IEDM цифры площади тоже являются несколько рекламными. Они верны лишь для одиночного массива ячеек и не учитывают усилители, буферы ввода-вывода, декодеры адреса, резервы размера для увеличения надёжности и размены плотности на скорость (для L1).
Для простоты возьмём только «скоростные» (High Performance) процессы Intel. Для 130 нм длина затвора составляла 46% технормы, а сегодня — 94%. Тем не менее, шаг затвора уменьшился в те же 4 раза, что и технорма. Однако если разделить площадь ячейки СОЗУ на квадрат технормы, то старым ячейкам нужно ≈120 таких квадратиков, а новым — уже ≈170. У AMD с её SOI-пластинами — примерно так же. На «65-нанометровом» техпроцессе фактический минимальный размер затвора может быть снижен до 25 нм, но шаг между затворами может превышать 130 нм, а минимальный шаг металлической дорожки — 180 нм. Начиная примерно с 2002 г. размеры транзисторов уменьшаются медленней технорм. Выражаясь языком современного рунета — нанометры уже не те…
А теперь, вооружившись
цифрами об этом сложном
микроэлектронном хозяйстве, вернёмся
к обещанным Intel «22 нанометрам». По предварительным
цифрам выглядит неплохо: площадь ячейки
— 0,092 кв.мк. для «быстрой» и 0,108 для энергоэффективной
версии процесса (данные 2009 г. для тестовой
микросхемы СОЗУ на 22 нм). Для быстрой версии
это эквивалентно 190 элементарным квадратам
— чуть хуже, чем для прошлых технорм.
Но Intel продолжит использовать 193-нанометровую
иммерсионную литографию и для 14 нм, возможно
— с тройным шаблонированием. А для 10 нм
— с пятерным (5 экспозиций и одно скругление
распорок). При этом для 10-нанометрового
процесса стоимость стадий литографии
на единицу площади будет примерно вшестеро
больше, чем для 32-нанометрового, а вот
окажется ли площадь меньше в 10 раз (как
при линейном уменьшении) — сомнительно.
Тут уже даже неважно, почему Intel решила,
что следующие два её процесса будут иметь
технормы 14 и 10 нм, а не 16 и 11, как можно
ожидать (каждая следующая — в √2 раз меньше).
Ведь нанометры теперь мало что значат…бардаке
Что дальше?
Если вернуться к обзорным графикам, последние несколько из них не зря касаются цены или себестоимости. Если по ним попытаться экстраполировать тенденции на будущее, то окажется, что через некоторое время в мире останется лишь 2–3 компании, способные разрабатывать и внедрять самые современные техпроцессы. Им это будет влетать в 11-значные суммы в долларах, окупить которые можно, лишь если продукция будет продаваться по всему миру, что возможно только при полной монополизации — одна
платформа
, одна архитектура,
одна концепция… Для
Более того, наверняка будет уменьшаться и число бесфабричных компаний. Дело даже не в том, что немногие крупные фирмы покроют своими чипами почти все потребности почти для всех. Даже если вы разработали что-то уникальное — стоимость внедрения может оказаться такой высокой, что вы не окупите её всеми своими продажами. И это тоже есть следствие массовых технологий:
Формируемое маской изображение перед попаданием на пластину оптически уменьшается в 4 раза до стандартной полосы засвета размером ≈24 мм (для современных литографов), а размер самой маски составляет около 18×12 см. Однако методы OPC и PSM требуют от неё иметь разрешение не хуже формируемого, что уже для 65 нм поднимает стоимость набора масок до сотен тысяч долларов, а для самых новых техпроцессов — до пары миллионов.
Теперь представим,
что нам — маленькой, но гордой
фирме — надо выпустить систему-на-
смартфонов
. Маркетологи говорят,
что из-за сильной конкуренции
со стороны угадайте-какой
проиграет
гонку прожорливости)
будет иметь себестоимость
В итоге окажется, что даже не допуская ни одной ошибки в рыночной стратегии, мы окупим нашу микросхему, лишь рассчитывая на производство и сбыт устройств с ней миллионами, иначе её никто не купит из-за цены. Недавно сотрудник компании Cadence (выпускающей специализированные САПРы для разработки микросхем) рассказал, что стоимость перехода с 32–28 на 22–20 нм сильно выросла по сравнению с предыдущими шагами. Микроэлектронные компании инвестировали в НИОКР по 32–28 нм 1,2 млрд. долларов и 2–3 млрд. для 22–20 нм. Проектирование чипа стоит 50–90 млн. долларов для 32 нм и 120–500 млн. долларов для 22 нм. Компенсация затрат на разработку и производство потребует продать 30–40 млн. 32-нанометровых кристаллов и 60–100 млн. на 20 нм.
Впрочем, и крупным
компаниям, товары которых покупают
как раз миллионами, тоже придётся
с трудом объяснять, зачем покупать
очередной процессор с
плата
за новинки — например, как следствие досрочно отменённой поддержки старых моделей или их запрограммированного износа и отключения…
Мировая микроэлектроника,
следуя закону Мура, всегда опровергала
регулярно выдвигаемые
Другая проблема в том, что даже в тех применениях, где производительность и память никогда не будут лишними, качественный скачок (вместо очередного удвоения регистров, векторов, кэшей и ядер) может быть лишь при переходе на новый вид элементной базы — графеновой, фотонной, спинтронной, квантовой или прочей «волшебной». Но для её разработки, адаптации к массовому производству и (особенно!) построению самого производства потребуется огромное количество денег — куда большее цены современного фаба. Вполне возможно, лет через 10 (когда нынешнюю литографию растягивать далее уже не получится) никакие частные фирмы это не потянут. А какое из государств даже сегодня захочет профинансировать высокорисковые технологии микроэлектроники будущего?