Автор: Пользователь скрыл имя, 08 Ноября 2011 в 06:40, реферат
Давным-давно, в 1945 г. — когда вычислительная техника уже была электронной, но ещё релейно-ламповой (хотя британцы уже во Второй Мировой Войне использовали германиевые диоды) — руководство американской компании BellLabs основало группу под руководством Уильяма Шокли по исследованию полупроводниковой замены вакуумным лампам, что и произошло через 2 года с изобретением транзистора. А в 1948 г. «transistron» был независимо изобретён работающими во Франции двумя немецкими физиками — ХэрбертомМатаре и ХайнрихомВелкером.
Вроде бы, всё это должно было дать новый поток принципиальных достижений, продвигающих интегральную технику. Однако за следующие 10 лет таковых оказалось гораздо меньше, чем даже за 70-е, хотя количественный прогресс, диктуемый законом Мура, продолжался. Возможно, уже открытого хватало, чтобы двигаться вперёд с обновлениями, прежде всего, технормы и числа слоёв межсоединений. Помимо этого, промышленность не забывала наращивать и диаметр пластин: в 1981 г. — 150 мм, в 1985 — 200 (до сих пор используемые на не самых крутых фабах) и в 1996 — 300. Переход на пластины 450 мм сильно затянулся из-за чрезвычайной дороговизны оборудования, покупку которого до 2020 г. смогут потянуть лишь 5-6 компаний в мире.
Наши дни
1990-е
Современный литографический сканер ASML TwinScan 1950i. Луч лазера, пройдя через многочисленные линзы и движущуюся взад-вперёд маску (её каретка видна справа от надписи TwinScan) попадает на каретку с экспонируемой пластиной, которая также движется, но уже в двух координатах, подставляя под луч новую порцию поверхности. Вторая каретка со следующей «вафлей» в этот момент проходит подготовительную стадию, в которой различные оптические датчики изучают малейшие неровности этой конкретной пластины, чтобы далее оптимизировать её экспонирование — двухстадийный конвейер. Слева от рабочей зоны видны входной и выходной порты для контейнеров с пластинами по 25 штук в каждом, а сверху (между надписью и кареткой маски) — банк масок, подставляющий нужную для данной экспозиции и имеющий собственный небольшой порт. «Светофор» — это индикатор состояния, встроенный почти в каждую установку в «чистой комнате» фаба. В движении всё это можно посмотреть тут. |
До 90-х гг. фотолитография использовала ртутные газоразрядные лампы, отсекая из их света всё, кроме нужной частоты, совпадающей с одним из пиков («линий») — G (436 нм), H (405) или I (365). После того, как мощности ламп стало не хватать для требуемой производительности, потребовалось внедрить эксимерный лазер, что сделали в 1982 г. в IBM (сам такой лазер изобретён в СССР в 1971 г.). В зависимости от газа он даёт длину волны 248 (KrF), 193 (ArF) и 157 нм (F2). От фторовых лазеров, правда, отказались из-за чрезвычайных технических проблем, решение которых не окупится преимуществами — дело в том, что сам воздух начинает поглощать излучение с длиной волны меньше 186 нм, так что весь литограф надо переделать под вакуум. Это его усложняет и удорожает с 40 до 50 млн. долларов, а сканеров фабу требуется несколько. Поэтому даже самые современные техпроцессы с технормами менее 30 нм всё ещё используют аргон-фторовый лазер. При этом переход на так называемый экстремальный ультрафиолет (ЭУФ, EUV) с длинами волн 13,5 нм и менее рано или поздно всё равно состоится — и без вакуума тут точно не обойтись.
Тут надо
сказать, почему формирование рисунка
на поверхности приобретает
OPC: требуется вычислить такую маску (зелёный контур), чтобы получаемый ею символ (красный) оказался как можно ближе к требуемому (синий). Без коррекции толщина линий символа окажется больше или меньше в разных частях, в т. ч. за счёт влияния соседних линий. Это может привести как к разрыву дорожки, так и к замыканию пары дорожек. |
Одна из таких продвинутых методик — вычислительная литография: использование масок, рисунок которых вычислен с учётом волновых свойств света с целью добиться большего разрешения или меньших искажений при данной длине волны. Первые подобные программы были написаны в начале 80-х и использовались лишь для оптимизации рисунка маски, т. к. недостаток вычислительной мощности позволял моделировать площадь всего в несколько квадратных микрон. К 1998 г., когда замаячил переход на 180 нм (первый техпроцесс с технормой меньше длины волны), мощность компьютеров уже сильно возросла, что позволило использовать более точные алгоритмы и модели. Для современных технорм требуются уже тысячи процессоров и недели расчётов, чтобы вычислить рисунки для десятков масок, необходимых самых сложным ИС.
К основным методам вычислительной литографии относятся фазосдвигающие маски (PSM) и оптическая коррекция близости (OPC). Используемая с 90-нанометрового процесса (2006 г.) технология PSM — это коррекция толщины отдельных «пикселей» маски для изменения их прозрачности, что меняет фазу проходящего сквозь них света. Учитывая волновые свойства, это позволит (не считаясь с длиной волны) экспонировать на фоторезисте рисунок, отдельные элементы которого либо усилены синфазным наложением волновых пиков, либо удалены противофазным — это увеличивает разрешение, приближая тот самый параметр k1 к идеалу. Более современная OPC искажает рисунок маски для компенсации ошибок получаемого изображения из-за дифракции падающих волн. OPC нужна уже не для увеличения разрешения, а для исправления искажений одиночных структур, форма которых при таких размерах получается куда хуже, чем если бы элементы были регулярными.
Микроэлектронщики давно хотели использовать медные межсоединения вместо алюминиевых, т. к. удельное сопротивление меди меньше. Это значит, что «медные» чипы меньше выделяют тепла и быстрее работают, т. к. меньшая часть коммутируемого транзисторами тока уйдёт в нагрев, а не в переключение других транзисторов. Однако если в линиях электропередач и прочих проводах медь применяется давно, то микроэлектроника не могла внедрить столь полезный металл десятки лет. Причина в том, что после осаждения меди при дальнейших процессах нагрева она диффундирует (внедряется) в подлежащие элементы, особенно в кремний, что даже получило термин «медное отравление».
В 1997 г. IBM наконец-то решила задачу. Сначала медь надо осадить. Но из-за её химической стойкости её нельзя протравить плазмой сквозь окна в фоторезисте (не удалив при этом оставшуюся, т. е. маскирующую часть самого резиста), как это делается для алюминия. Вместо это применяется «дамасская работа» (damascene): процесс, похожий на изготовление булатной стали с мелким орнаментом. Сначала в изоляторе протравливаются канавки для дорожек. Далее вся поверхность выстилается барьерным металлом (который чаще всего оказывается нитридом титана или вольфрама, что, строго говоря, относится к керамике), не допускающим диффузии, но пропускающим ток. Его толщина должна быть небольшой, т. к. его сопротивление всё же меньше, чем даже у алюминия.
Химико-механическая планаризация: вращающийся подвес прижимает пластину лицевой стороной к вращающемуся диску с наносимой на него пастой. Специальный диск-восстановитель (не показан) выравнивает пасту. Восстановитель и подвес также могут двигаться вдоль радиуса. |
Далее
на всю поверхность осаждают толстый
слой меди, переполняющий канавки. Т. к.
плазмохимическое травление (оно же
— реактивное ионное травление, RIE)
не подходит, используется химико-
КНИ в чипе IBM (для наглядности пространство между проводниками вытравлено). Снизу вверх: подложка, оксид-изолятор, тонкий слой кремния, транзисторы и один слой металлических межсоединений. |
Ещё одно
достижение изначально было связано
с радиационно-стойкой
Но в 1998 г. IBM анонсировала технологию кремния на изоляторе(КНИ, silicon on insulator, SOI): на кремниевой пластине формируется слой оксида кремния (изолятора), а поверх него — тонкий слой кремния. Строго говоря, КНС тоже относится к КНИ, т. к. сапфир (оксид алюминия Al2O3) также является изолятором. Но кремниевый КНС дешевле и лучше приспособлен к имеющемуся оборудованию. Учитывая преимущества, можно предположить, что за 13 лет вся полупроводниковая промышленность давно перешла на КНИ-пластины. Однако мировой лидер этой самой промышленности, компания Intel, будто в упор их не замечает и продолжает использовать «bulk silicon», т. е. чистые кремниевые пластины, т. к. они дешевле. К этому заявлению мы ещё вернёмся…
2000-е
Кремний до и после осаждения на кремний-германиевый слой. |
В 2001 г. IBM изобретает напряжённый кремний (strained silicon) — формирование слоя кремния для канала, в котором расстояние между атомами (как минимум в направлении исток-сток) не равно естественному шагу кристаллической решётки (543 пм). Для большего шага сначала внедряется «посевной» слой кремния-германия. Кристалл германия имеет шаг атомов 566 пм (именно из-за большей подвижности носителей заряда его первым стали применять в электронике). Смешанный полупроводник сохраняет это значение, даже если доля германия всего 17% (это для 90 нм; а для 32 нм — уже 40%). Осаждаемые поверх атомы кремния межатомными силами крепятся к атомам широкой решётки и остаются с её шагом, формируя затвор. Разряжение атомов увеличивает подвижность электронов, что ускоряет транзистор на 20–30%.
В 2004 г. эту технологию применили Intel и AMD для техпроцесса 90 нм. Для 65 нм внедрена ионная имплантация германия и углерода в исток и сток. Германий раздувает концы транзистора, сжимая его канал, что увеличивает скорость дырок (т. е. основных носителей заряда в p-канальных транзисторах). Углерод, наоборот, сжимает исток и сток, что растягивает n-канал, увеличивая подвижность электронов. Также весь p-канальный транзистор покрывается сжимающим слоем нитрида кремния.
Шаблонирование распорками (сверху вниз): формирование первичного шаблона фоторезистом (оранжевый), осаждение химической маски (зелёная), формирование распорок травлением, удаление резиста, травление рабочего слоя (синий), удаление распорок. |
В 2006 г. только что внедрённый техпроцесс 65 нм уже не мог основываться лишь на вычислительной литографии, т. к. с длиной волны 193 нм её уже не хватало. Решение, основательно обновившее мировое чипостроение — множественное структурирование, более известное по своей простейшей реализации — двойное структурирование (double patterning). Это семейство технологий снижает минимальный экспонируемый размер увеличением числа экспонирований. Как правило, в самых современных техпроцессах применяются несколько приёмов из этого арсенала.
Самосовмещёные распорки (self-aligned spacers) позволяют получить вдвое большее разрешение формируемого рисунка при той же технорме: вначале на боковые стенки фоторезиста налипает специальная химическая маска, используемая далее как финальный шаблон травления после удаления резиста. Разумеется, этот приём можно повторять и далее, используя вторичный шаблон для изготовления третичного с ещё вдвое большим разрешением — насколько это позволит химическая устойчивость материалов и повторяемость процессов.
Второй случай, требующий применения нового резиста, — двойное (кратное) экспонирование (double (multiple) exposure): вторая маска экспонируется на тот же резист со смещением относительно первой на величину технормы, причём пластина даже не покидает литограф. Чтобы второй рисунок добавился к первому (а не частично наложился на него), требуется, чтобы оба раза формировались детали шириной меньше технормы. Таким образом, например, формируются линии металла и поликремния — сначала все «вдоль», потом все «поперёк». Замена двухмерного рисунка двумя одномерными упрощает его нанесение.
Ещё один вариант двойного экспонирования (применяется начиная с 32 нм) использует два разных вида резиста. Второй наносится на рисунок, сформированный в первом, облучается через вторую маску, после чего удаляется незафиксированная часть второго резиста, но так, чтобы не повредить рисунок первого. И тут нужна продвинутая химия — новые резисты, боковое травление для уменьшения ширины и пр. Зато, теоретически, такая методика позволяют формировать сколь угодно мелкие детали. Например, 22-нанометровые элементы могут получаться перемежением двух масок на 45-нанометровом литографе, трёх масок на 65- или четырёх на 90-нанометровом. Т. е. текущий техпроцесс можно «разогнать» до следующего за счёт увеличения числа масок и производственных стадий — с очевидным удорожанием стоимости завода и внедрения производства новых микросхем. Но с недавних пор это всё равно оказывается дешевле «честного» уменьшения технормы через литографию.