Фрактальность

Автор: Пользователь скрыл имя, 28 Марта 2013 в 19:53, статья

Описание работы

Слова «фрактал», «фрактальная размерность», «фрактальность» появились в научной литературе сравнительно недавно и не успели еще войти в большинство словарей, справочников и энциклопедий. Придумал слово «фрактал» (от латинского «фрактус» — дробный, нецелый) наш современник, математик Бенуа Мандельброт, сумевший открыть совсем рядом с нами поистине удивительный мир, по-новому (или, по крайней мере, несколько иначе) взглянув на многие, казалось бы, хорошо знакомые предметы и явления.

Работа содержит 1 файл

Статья №1 Фрактальность.doc

— 82.00 Кб (Скачать)

ФРАКТАЛЬНОСТЬ

В начале было слово

Слова «фрактал», «фрактальная размерность», «фрактальность» появились в научной литературе сравнительно недавно и не успели еще войти в большинство словарей, справочников и энциклопедий. Придумал слово «фрактал» (от латинского «фрактус» — дробный, нецелый) наш современник, математик Бенуа Мандельброт, сумевший открыть совсем рядом с нами поистине удивительный мир, по-новому (или, по крайней мере, несколько иначе) взглянув на многие, казалось бы, хорошо знакомые предметы и явления.

Мандельброт обратил  внимание на то, что при всей своей  очевидности ускользало от его предшественников, хотя встречалось на каждом шагу и буквально «лежало на поверхности»: контуры, поверхности и объемы окружающих нас предметов не так ровны, гладки и совершенны, как принято думать. В действительности они неровны, шершавы, изъязвлены множеством отверстий самой причудливой формы, пронизаны трещинами и порами, покрыты сетью морщин, царапин и кракелюр.

В арсенале современной  математики Мандельброт нашел удобную количественную меру неидеальности объектов — извилистости контура, морщинистости поверхности, трещнноватости и пористости объема. Ее предложили два математика — Феликс Хаусдорф (1868— 1942) и Абрам Самойлович Безикович (1891 —1970). Ныне она заслуженно носит славные имена своих создателей (размерность Хаусдорфа — Безиковича).

Как и всякая новая  количественная характеристика, размерность  Хаусдорфа — Безиковича должна была пройти проверку на разумность и блестяще ее выдержала. Применительно к идеальным объектам классической евклидовой геометрии она давала те же численные значения, что и известная задолго до нее так называемая топологическая размерность (иначе говоря, была равна нулю для точки, единице — для гладкой плавной линии, двум — для фигуры и поверхности, трем — для тела и пространства). Но совпадая со старой, топологической, размерностью на идеальных объектах, новая размерность обладала более тонкой чувствительностью ко всякого рода несовершенствам реальных объектов, позволяя различать и индивидуализировать то, что прежде было безлико и неразличимо. Так, отрезок прямой, отрезок синусоиды и самый причудливый меандр неразличимы с точки зрения топологической размерности — все они имеют топологическую размерность, равную единице, тогда как их размерность Хаусдорфа — Безиковича различна и позволяет числом измерять степень извилистости.

Но самое  необычное (правильнее было бы сказать — непривычное) в размерности Хаусдорфа — Безиковича было то, что она могла принимать не только целые, как топологическая размерность, но и дробные значения. Равная единице для прямой (бесконечной, полубесконечной или для конечного отрезка), размерность Хаусдорфа — Безиковича увеличивается по мере возрастания извилистости, тогда как топологическая размерность упорно игнорирует все изменения, происходящие с линией, если только они не сопровождаются разрывом или склеиванием каких-то точек. При этом, увеличивая свое значение, размерность Хаусдорфа — Безиковича не меняет его скачком, как сделала бы «на ее месте» топологическая размерность. Нет, размерность Хаусдорфа — Безиковича — и это на первый взгляд может показаться непривычным к удивительным — принимает дробные значения: равная единице для прямой, она становится равной 1,02 для слегка извилистой линии, 1,15 — для более извилистой, 1,53 —для очень извилистой и т. д.

Именно для  того чтобы особо подчеркнуть способность размерности Хаусдорфа — Безиковича принимать дробные, нецелые, значения, Мандельброт и придумал свой неологизм, назвав ее фрактальной размерностью. Итак, фрактальная размерность (не только Хаусдорфа — Безиковича, но и любая другая) — это размерность, способная принимать не обязательно целые значения, фрактал — объект с фрактальной размерностью, а фрактальность — свойство объекта быть фракталом или размерности быть фрактальной.

Дробная размерность?! Немало найдется таких, кто с негодованием скажет, что «это уж слишком», что ни о чем таком не слыхивали ни они сами, ни их отцы и деды. Такого рода аргументы, более эмоциональные, нежели убедительные, свидетельствуют лишь о незнании работ Хаусдорфа и Безиковича. Иное дело — ссылка на то, что отцы и деды не слыхивали о фрактальной размерности; при всей синонимичности дробного и фрактального, термин «фрактальный» появился лишь в работах Бенуа Мандельброта и заведомо не был известен людям старшего поколения. Тем же, кто станет возражать против «нелепой» (разумеется, только с их точки зрения) дробной размерности, ссылаясь на невозможность Придать ей наглядный смысл, мы скажем: во-первых, никто не присягал на целочнеленность любой размерности только на  том   основании,   что   наша   добрая знакомая — топологическая размерность — принимает целые значения, и, во-вторых, фрактальная размерность уже Доказала свою полезность. Что же касайся наглядности, то представить себе Фрактальную кривую, то есть кривую с фрактальной размерностью Хаусдорфа - Безиковича, настолько извилистую, Что она уже не классическая линия, еще не плоская фигура, все же легче, чем представить себе наглядно какие-нибудь средние статистические показатели. В отличие от некоторых арифметических задач, где целочисленность ответа предопределена далеко не всегда явно формулируемым требованием (вспомним хотя бы «два землекопа и две трети» из знаменитого стихотворения С. Я. Маршака), среднее число детей в семьях, проживающих в какой-нибудь местности, вполне может оказаться, например, равной 1,9. Между тем никому не приходит в голову возражать против дробных («фрактальных») среднестатистических показателей на том основании» будто они лишены наглядности.

Действующие лица

По досадной традиции, не известно кем и когда установленной, современные науки в большинстве учебников принято излагать как некую безликую и вневременную совокупность более или менее согласованных определений, понятий, идей и методов. Понять внутреннюю логику развития науки, движущие пружины развития и необходимость введения того или иного понятия из такого рода текстов  практически  невозможно.

Попытаемся  хотя бы немного нарушить эту прискорбную традицию.

Создатель фрактальной геометрии Бенуа Мандельброт родился в 1924 году

в Варшаве. В 1936 году семья  Мандельбротов переехала в Париж, где Бенуа окончил Политехническую школу (1947).

Ученую степень  магистра наук (по аэрокосмическим наукам) защитил в Калтехе — Калифорнийском технологическом институте в Пасадене (1948), а высшую ученую степень доктора философии (по математике) — в Парижском университете (1952). До окончательного переезда в США (1958) Бенуа Мандельброт был приглашенным профессором в университетах Принстона, Женевы и Парижа. С 1974 года Мандельброт состоит членом совета по научным исследованиям фирмы IBM. a с 1984 года — профессором математики Гарвардского университета.

Помимо многочисленных статей перу. Бенуа Мандельброта принадлежат три' ставшие ныне классическими монографии о фракталах и их роли в. математике, естественных и социальных науках: «Фрактальные объекты: форма, случайность и размерность» (1955), «Фракталы: форма, случайность и размерность» (1977) и «Фрактальная геометрия природы» (1982).

Число публикаций о фракталах, фрактальной геометрии и фрактальной физике (влиянии фрактальной структуры среды на протекающие в ней процессы и свойства фрактальных объектов) возрастает во всем мире экспоненциально. Столь большой и не ослабевающий интерес объясняется не столько своеобразной модой и новизной, но и принципиально новыми возможностями, которые фрактальность открывает перед современными науками о природе и обществе. Формулу своего открытия сам Мандельброт выразил в следующих поэтических строках (1984):

«Почему геометрию  часто называют холодной и сухой? Одна из причин кроется в ее неспособности описывать форму облака, горы, береговой линии или дерева. Облака — не сферы, горы — не конусы, береговые линии — не окружности, древесная кора не гладка, и молния — далеко не прямая,.. Природа демонстрирует нам не просто более высокий, а совершенно иной уровень сложности. Число различных масштабов длины бесконечно, какую бы цель мы ни преследовали при их описании. Существование таких структур бросает нам вызов, ставя перед необходимостью заняться изучением тех форм, которые Евклид оставил а стороне как лишенные какой бы то ни было правильности,— исследованием морфологии аморфного. Математики уклонились от этого вызова и все более уходили от природы, измышляя теории, не имеющие ни малейшего отношения к тому, что доступно нашему созерцанию и нашим ощущениям».

Исаак Ньютон заметил однажды, что если ему и удалось что-нибудь свершить в науке, то лишь потому, что он стоял на плечах гигантов. Бенуа Мандельброт неоднократно подчеркивал заслуги своих предшественников Хаусдорфа и Безиковича в создании понятия дробной размерности, ставшего краеугольным камнем всей фрактальной науки.

Феликс Хаусдорф родился 8 немецком городе Бреслау  (ныне польском городе Вроцлаве) в 1868 году. Окончил в 1891 году Лейпцигскнй университет. Под псевдонимом Поль Монгрс выпустил несколько беллетристических произведений. Профессор Лейпцнгского (1902—1910), Боннского    (1910—1913,    1921 — 1931) Грейфсвальдского (1913—1921)  университетов.   В   1935   году   Хаусдорф   был отстранен нацистами от преподавательской деятельности как «неариец». В 1942 году,   опасаясь   репрессий   со   стороны гестапо, Хаусдорф вместе с женой и ее сестрой покончил жизнь самоубийством. Хаусдорфу   принадлежит   множество важных и глубоких результатов в топологии, теории непрерывных групп, математическом   анализе   и   других   разделах математики. Он внес существенный вклад в разрешение кризиса в основаниях математики (Мандельброт датирует кризис периодом 1875—1925 годов), написав замечательную  монографию «Основы теории множеств» (1914). Дробная    размерность    Хаусдорфа    — лишь одна из искорок его блестящего таланта.

Другим предтечей теории фракталов был Абрам Самойлович Безикович. Он родился в 1891 году в России. В 1912 году окончил Петербургский университет н с 1917 года был профессором Пермского университета.

Научное творчество и преподавательскую деятельность Безиковича отличали особое изящество и глубина результатов, как правило, тонких и весьма нетривиальных. Примером тому может служить решенная (опровергнутая) Безиковичем проблема японского математика Какей, которую можно сформулировать так: не выводя из плоскости единичный отрезок АВ, совместить его с ним же самим в перевернутом виде (так, чтобы конец B в новом положении совпал с концом А в исходном, а конец А в новом положении совпал с концом B в исходном), следя за тем, чтобы отрезок АВ при этом замел наименьшую площадь.

Перевернуть отрезок  АВ можно, например, двумя способами. Во-первых, повернуть АВ на 180 градусов вокруг точки А и сдвинуть на единичное расстояние, чтобы совместить с исходным отрезком. При этом единичный отрезок АВ заметет полукруг радиусом 1 и площадью я/2. Во-вторых, отрезок АВ можно повернуть на 180 градусов вокруг его середины. При этом единичный отрезок АВ заметет круг радиусом 1/2 и площадью п/4. А нельзя ли перевернуть отрезок АВ так, чтобы он замел еще меньшую площадь? Какейя ответил на этот вопрос утвердительно, предложив способ переворачивания, при котором единичный отрезок АВ заметает внутренность гигктнклоиды с тремя точками возврата (заострениями) площадью я/8 и высказал гипотезу, что эта площадь мини-мальма.

В разгар гражданской  воины (1919) Безикович сумел опровергнуть гипотезу Каксйн. доказав, что единичный отрезок можно перевернуть так, чтобы он замёл сколь угодно малую площадь!

О силе напученного результата и впечатлении, которое он произвел на математическое сообщество, можно косвенно судить по тому, что его автор в 1920 году был избран профессором Петроградского университета. Сам Безикович, пронесший через всю жизнь любоьь к трудным и красивым («олимпиадным») задачам, называл себя экспертом по ма-• тематической «патологии»: стоило ему заподозрить, ,что какая-то гипотеза неверна, как он не успокаивался до тех пор, пока ему не удавалось построить контрпример.

В начале двадцатых годов  Безикович был удостоен Рокфеллеровской стипендии, дававшей ему возможность поработать в лучших зарубежных математических центрах, но неоднократные обращения к властям за разрешением .на ' выезд неизменно наталкивались на отказ. И тогда мало-помалу созрел план покинуть Россию нелегально. К Безиковичу (события происходили в 1924 году) должны были присоединиться А. А. Фрид* май j— автор знаменитого нестационарного, то есть зависящего от времени, решения уравнений Эйнштейна — и математик Я. Д. Тамаркин. В последний момент из-за болезни А. А. Фридман вынужден был остаться.

Из Латвии, куда беглецы  с риском для жизни переправились  по еще не окрепшему льду пограничной реки, Безикович отправился в Копенгаген, где на средства Рокфеллеровской стипендии смог поработать вместе с Гаральдом Бором, братом великого физика Нильса Бора, над теорией почти периодических функций. Именно в эту теорию и в теорию дробных размерностей Безикович внес свои наиболее существенный вклад.

После Копенгагена Безикович  в течение нескольких месяцев работал в Оксфорде с.Дж. Г. Харли, а с 1927 года обосновался в Кембридже, где с 1930 года и до конца жизни (Безикович скончался в 1970 году) состоял членом знаменитого Тринити колледжа (колледжа Св. Троицы).

И Хаусдорф, и Безикович  были бы немало удивлены, если бы узнали, какой интерес вызвали у потомков их работы по дробным размерностям.

И опять, и опять, и опять...

Среди множества  необычных объектов, построенных математиками в конце XIX — начале XX века при пересмотре оснований математики, многие оказались фракталами, то есть объектами с дробной, или фрактальной, размерностью Хаусдорфа — Безиковича. Все они очень красивы и часто носят поэтические названия: канторовская пыль, кривая Пеано, снежинка фон Коха, ковер Серинского и т. д. И все они обладают одним очень важным свойством, которое роднит их с самой обыкновенной прямой. Это свойство называется самоподобием: все эти фигуры подобны любому своему фрагменту.

Суть самоподобия можно  пояснить на следующем примере. Представьте себе, что перед вами снимок «настоящей» геометрической прямой, «длины без ширины», как определял линию Евклид, и вы забавляетесь с приятелем, пытаясь угадать, предъявляет ли он вам исходный снимок (оригинал) или увеличенный в нужное число раз снимок любого фрагмента прямой. Как бы ни старались, вам ни за что не удастся отличить оригинал от увеличенной копии фрагмента: прямая во всех своих частях устроена одинаково, подобна самой себе, но это ее замечательное свойство несколько скрадывается незамысловатой структурой самой прямой, ее «прямолинейностью».

Информация о работе Фрактальность