Переиздания

Автор: Пользователь скрыл имя, 25 Февраля 2013 в 11:58, курсовая работа

Описание работы

Важнейшим элементом технологии офсетной печати является печатная форма, которая в последние годы претерпела существенные изменения. Идея записи информации на формный материал не посредством копирования, а путем построчной записи сначала с материального оригинала, а затем из цифровых массивов данных была известна уже лет тридцать назад, но ее интенсивная техническая реализация началась сравнительно недавно. И хотя сразу на этот процесс перейти невозможно, постепенно такой переход происходит.

Содержание

Введение
1. Основные виды формных пластин для офсетной печати
1.1 Способ офсетной печати
1.2 Способы получения печатных форм и виды формных пластин
2. Аналоговые формные материалы
2.1. Формные материалы для изготовления печатных форм контактным копированием
2.1.1 Биметаллические пластины
2.1.2 Монометаллические пластины
2.2 Электростатические формные материалы
3. Цифровые формные материалы
3.1 Бумажные пластины
3.2 Полиэстровые формные пластины
3.3 Металлические пластины
3.3.1 Серебросодержащие пластины
3.3.2 Фотополимерные пластины
3.3.3 Термальные пластины
3.3.4 Беспроцессные формные пластины
3.3.5 Гибридные пластины
4. Форменные пластины для офсета без увлажнения
4.1 Пластины для «сухого» офсета
4.2 Плюсы и минусы «безводных» пластин
Заключение
Список литературы

Работа содержит 1 файл

Работа Табаров.docx

— 295.86 Кб (Скачать)

Повышенная контрастность  новых пластин облегчит пользователям  визуальный контроль качества экспонирования. В пластинах Azura используется эксклюзивная технология Агфа ТермоФьюс ТМ (Agfa ThermoFuseTM), при которой изображение формируется на пластине без применения химических реагентов. Технология базируется на простом решении – вплавлять в губчатую алюминиевую основу резиноподобный материал, из которого образуются печатные элементы. В отличие от обычных термальных пластин Azura TS использует простой процесс промывки, очищающий пластину и закрывающий гуммирующим раствором печатную форму одновременно. Эта технология избавляет от необходимости использования химической проявки. Объем потребляемой жидкости и отходов, таким образом, практически сходит на нет и исчезает необходимость в контроле за химическими процессами.

Год назад еще один новый  тип пластин был разработан для  СtР с лазерным диодом с излучением в фиолетовом спектре. Если «фиолетовые» устройства СtР станут популярными, производителям техники придется соответствовать запросам рынка. Ожидается, что эти устройства будут обрабатывать фотополимерные формные пластины по тем же принципам, по которым экспонируются традиционные негативные пластины [6, 8].

Однако экспонируемых  не нуждающихся в проявке формных  материалов на рынке пока представлено немного. Пионером в этой области  является компания Presstek, в конце 2003 года запустившая в серийное производство негативную пластину Эпплэйс (Applause). Эта пластина состоит из пяти слоев: алюминиевой основы, полиэфирного слоя, соединяющего основу и олеофильный слой, из алеофильного и гидрофильного слоя и защитного покрытия. После экспонирования без дополнительной обработки Applause может устанавливаться в печатную машину. Максимальная тиражестойкость Applause — 100 тыс. оттисков [6]. 

 

3.3.5 Гибридные  пластины

Пластины представляют собой  комбинацию диффузии серебра и фотополимерную технологию. В них используется обычная  серебросодержащая эмульсия, нанесенная поверх фотополимерной эмульсии, применяемой  в традиционных пластинах. Изображение  на пластине формируется аргоновым  или YAG лазером малой мощности по технологии диффузии серебра, на поверхности  эмульсии. Затем пластина проходит обработку в две стадии. На первой стадии проходит процесс проявления изображения, аналогичный проявлению фотопленки, только без прозрачной подложки. Вместо этого частички серебра  оседают на поверхности фотополимерной эмульсии, нанесенной на металлическую  основу. Вторая стадия состоит в  формировании изображения на фотополимерном слое стандартным УФ-излучением, а осажденное серебро используется как маска. Эти пластины объединяют достоинства серебросодержащих и фотополимерных пластин и могут воспроизводить точку 1–99%; но печатнотехнические свойства этих пластин такие же, как у традиционных, с тиражестойкостью до 300 тыс. оттисков. Есть некоторые ограничения по применению этих пластин из-за экологических соображений, и процессоры для обработки их сложны и громоздки. Эти процессоры нуждаются в более тщательной очистке, чем процессоры для серебросодержнащих или фотополимерных пластин [4, 8].

 

4. Формные пластины  для офсета без увлажнения 

 

4.1 Пластины для «сухого»  офсета

Одна из самых интересных задач, которую поставили перед  собой изыскатели в области печати за последние сорок лет, - это возможность  обнаружить способ устранения увлажняющего раствора в офсете. Печатать без  воды означало бы добиться двух больших  преимуществ:

—устранить одну переменную стадии печати;

—существенно улучшить качество печатной продукции, добившись 
большего глянца и насыщенности цветов.

Для того чтобы этого добиться, пошли различными путями. Сначала  исследовали пластину, на которую  можно было бы нанести краску без  предварительного смачивания. Однако после различных дорогостоящих  исследований оставили этот проект.

В начале 1980-х годов известное  японское общество Торэй (Toray) сумело запатентовать пластину, чьи характеристики экспонирования и проявки совершенно сходны с характеристиками традиционных пластин; но благодаря использованию краски особого типа, она дает возможность печати без смачивания.

Возможность не смачивать  пластину до нанесения краски появилась  благодаря присутствию в пробельных элементах слоя силикона, который  отторгает краску.

Пластина состоит из алюминиевой  основы, на которую нанесен слой фотополимера, а на него - слой силикона. Толщина силикона — около 2 мкм. Силикон — кремнийорганический полимер — высокомолекулярное соединение, содержащее атомы кремния, углерода и других элементов. Он состоит из макромолекул на базе оксида кремния, имеющих линейную или циклическую форму [3, 7].

Данный силиконовый слой выполняет функцию отталкивания краски (аналогично функции воды в  офсете с увлажнением), что позволяет  производить офсетную печать без  контроля за балансом "краска-вода". В англоязычной литературе его принято обозначать термином «уик флайд бандери лэй» («weak fluid boundary layer» (WFBL)) — жидкий разделительный слой с низким поверхностным натяжением. На стадии экспонирования свет определяет химическую реакцию, посредством которой фотополимер образует молекулярные связи с силиконовым слоем. Следовательно, на стадии проявки те участки, куда свет не дошел, легко устраняются, и подлежащий фоточувствительный слой становится участком, восприимчивым к краске; а те участки, где экспонированный силикон отвержден, станут местами отторжения (рис.12).

 

Рис. 12. Структура  пластины для сухого офсета

 

Отторжение краски возможно, поскольку кремниевые соединения не принимают никакие жидкости, содержащие полярные молекулы. Растительные масла  обычных красок содержат некоторое  количество таких молекул, но недостаточно, чтобы пластины отторгли их.

Поэтому следует использовать краски соответствующего состава, с  лаком на основе гликолей.

Пластины для офсета без  увлажнения проявляются химикомеханическим способом с использованием химических реактивов или воды.

В настоящее время разработаны  негативные и позитивные химически  проявляемые пластины, которые экспонируются  УФ-излучением или ИК-лазерами. Проявка пластин включает два этапа: химическую обработку и удаление силиконового слоя с печатающих элементов. В процессе химической обработки негативных пластин регистрирующий слой теряет чувствительность к свету или теплу, а его экспонированные участки теряют связь с силиконовым слоем. При обработке позитивных пластин адгезия экспонированных участков к силикону усиливается. Удаление силикона выполняется механическим или химикомеханическим способом [4, 8].

Отдельную группу составляют экспонируемые ИК-лазерами аблативные формные материалы, ведущим разработчиком которых является компания Presstek. В этих негативных материалах абсорбирующий излучение и воспринимающий краску слои разделены. Абсорбирующий излучение полимер расположен под слоем силикона. Под воздействием ИК-излучения полимер разогревается, испаряя находящийся над ним силикон, и сгорает, открывая воспринимающий краску слой. Проявка аблативных пластин заключается в удалении с их поверхности продуктов горения. Экспонирующая установка должна быть оснащена мощным вытяжным устройством. В настоящее время на рынке представлены аблативные материалы на алюминиевой и пленочной основе для экспонирования в печатных машинах и для экспонирования в лазерных CtP-установках [6]. 

 

4.2 Плюсы и минусы  «безводных» пластин

Данные пластины разрешают  одну проблему, но при этом возникают  другие неудобства. Первое из них - возможность  возникновения налета соответственно пробельным элементам, поскольку скорость станка и сопутствующий перегрев группы нанесения красок могут вызвать  существенное изменение вязкости краски с сопутствующим изменением характеристик  отторжения. Для устранения этого  недостатка нужна термостатированная группа нанесения красок, и необходимо контролировать состояние влажности и температуры в печатном цехе.

Вторая проблема, возникшая  при использовании этих пластин, - трудность сохранения фона печати в чистоте, при пылящих красках. Увлажняющий раствор в классической системе позволяет "уловить" с  каучука все частички волокна, которые  отделяются от бумаги. Поэтому печатать с безводными пластинами лучше всего  на мелованной бумаге с хорошей прочностью поверхности [12].

Подытоживая характеристики пластин такого типа, можно сказать:

—безводная пластина дает высокую плотность печати легче, чем в традиционной системе;

—она дает меньше брака, за счет того, что можно получить оптимальный лист после любой  остановки станка, и гораздо быстрее, чем с обычными пластинами;

—основа пластины подвергается меньшим изменениям размеров;

—она обеспечивает более  постоянное качество печати;

—пластины требуют более  осторожного манипулирования и хранения, поскольку кремниевыйслой, более хрупок, чем алюминиевый и 
если он будет удален, то станет печатным элементом;

—для хорошей производительности системы нужны постоянные 
условия: бумага с сопротивлением на разрыв и на пыление, соответствующие краски и опытность печатников; совместимость формных пластин и красок необходимо тестировать или руководствоваться рекомендациями производителей [7, 12].

 

 

Заключение

 

На сегодняшний день в  полиграфии представлен широкий  выбор материалов для изготовления печатных форм офсетной печати. Наиболее популярны из них следующие: монометаллические, полимерные, серебросодержащие и  т.д.

Выделить какой-либо один из видов печатных форм в качестве приоритетного было бы неоправданно, так как каждый имеет свою специфику  применения. Выбор необходимого формного материала для конкретного вида печатных работ способствует выполнению заказа типографией в максимально  сжатые сроки при минимальных  затратах.

Для полноцветной печати целесообразно применять монометаллические формы. Также эксперты рекомендуют их использовать и для однокрасочной печати, когда требуется высокое качество цветопередачи. Такие пластины могут использоваться в ряде производств: коммерческой листовой печати, журнальной продукции, упаковке, малом офсете и даже в газетной печати. Использование полиэфирных офсетных форм в оперативной полиграфии обеспечивает отличное качество при небольших тиражах и минимум затрат. Однако основное внимание сосредоточено на металлических СtР-пластинах.

Серебросодержащие формы  — это оптимальный баланс между  скоростью изготовления печатной формы, низкой стоимостью и стабильностью  печати всего тиража. Фотополимерные пластины, возможно, не самые чувствительные, но у них очень высокая тиражестойкость и печатные характеристики. Термальным пластинам свойственна высокая разрешающая способность. А беспроцессные – это материал не нуждающиеся в обработке после экспонирования. Хотя последние имеют более высокую цену, чем у обычных CtP -пластин, и невысокую тиражестойкость, зато для небольших типографий не нуждающиеся в проявке пластины уже сегодня являются серьезной альтернативой традиционным CtP-пластинам [15].

Но, к сожалению, в России пластины для CtP пока не производятся. По-видимому, нынешний объём потребления непривлекателен для открытия местного производства. В пересчёте на среднюю цену цифровой пластины 12 долл./мпри объёме продаж 800 000 м— около 10 млн. долл. В ушедшей вперёд Западной Европе рост потребления цифровых пластин уже достиг 80%; у нас же, по оценкам экспертов, доля CtP пластин составляет 30%. Но потенциал роста очевиден. Специалисты обещают, что потребление СtР-пластин на российском рынке за этот год увеличится в два раза. При таком потенциале проект вполне может кого-то заинтересовать [8].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы

 

1.  Басовский Л.Е. Управление качеством: Учебник/ Л.Е. Басовский, В.Б.Протасьев.– М: ИНФРА-М, 2001. – 212с.

2.  Гельмут Киппхан. Энциклопедия по печатным средствам информации. Технологии и способы производства/ Гельмут Киппхан; Пер. с нем. – М.: МГУП, 2003. – 1280 с.

3.  Дэниел Дж. Вилсон. Основы офсетной печати/ Дэниел Дж. Вилсон; Пер. с англ. М. Бредиса. - М.: ПРИНТ-МЕДИА центр, 2005. - 232 с.

4.  Марголин Е.М. Формные пластины для CtP-систем 2006 [Элетроный ресурс]./Е.М.Марголин.-Режим доступа:http://newsprint.ru/polig_m12_06.html.

5.  ООО “Ларк Лтд” Печатные полиэстеровые формы [Электронный ресурс]. - Режим доступа: http://www.lark-ltd.com/formi.htm.

 


Информация о работе Переиздания