Переиздания

Автор: Пользователь скрыл имя, 25 Февраля 2013 в 11:58, курсовая работа

Описание работы

Важнейшим элементом технологии офсетной печати является печатная форма, которая в последние годы претерпела существенные изменения. Идея записи информации на формный материал не посредством копирования, а путем построчной записи сначала с материального оригинала, а затем из цифровых массивов данных была известна уже лет тридцать назад, но ее интенсивная техническая реализация началась сравнительно недавно. И хотя сразу на этот процесс перейти невозможно, постепенно такой переход происходит.

Содержание

Введение
1. Основные виды формных пластин для офсетной печати
1.1 Способ офсетной печати
1.2 Способы получения печатных форм и виды формных пластин
2. Аналоговые формные материалы
2.1. Формные материалы для изготовления печатных форм контактным копированием
2.1.1 Биметаллические пластины
2.1.2 Монометаллические пластины
2.2 Электростатические формные материалы
3. Цифровые формные материалы
3.1 Бумажные пластины
3.2 Полиэстровые формные пластины
3.3 Металлические пластины
3.3.1 Серебросодержащие пластины
3.3.2 Фотополимерные пластины
3.3.3 Термальные пластины
3.3.4 Беспроцессные формные пластины
3.3.5 Гибридные пластины
4. Форменные пластины для офсета без увлажнения
4.1 Пластины для «сухого» офсета
4.2 Плюсы и минусы «безводных» пластин
Заключение
Список литературы

Работа содержит 1 файл

Работа Табаров.docx

— 295.86 Кб (Скачать)

Изготовление офсетных формных  пластин осуществляется в несколько  этапов:

1. Предварительная обработка  алюминиевых листов

2. Зернение поверхности.

3. Анодирование (анодное  оксидирование).

4.  Нанесение светочувствительного копировального слоя.

Предварительная обработка  алюминия включает в себя очистку  пластины от загрязнений и обезжиривание.

После этого следует электрохимическое зернение (с использованием переменного тока), в результате которого создаётся высокоразвитая структура поверхности, которая обеспечивает адсорбционные свойства подложки, а также позволяет удержать большее количество увлажняющего раствора и легче добиться баланса «краска — вода» при печати. Как правило, зернение идёт в три этапа, в результате которых на поверхности пластины создаётся три типа микронеровностей: крупное, среднее и мелкое зерно. Крупное зерно обеспечивает качественное воспроизведение полутонов и хорошее восприятие увлажняющего раствора. Среднее зерно отвечает за тиражестойкость печатных форм. Мелкое зерно позволяет достичь баланса «краска — вода» и повышает износостойкость поверхности формы.

 

Анодное оксидирование состоит в преобразовании алюминиевой поверхности в окись алюминия электрохимической обработкой. Окись алюминия (А1О3) - это очень прочный элемент, с очень высокой химической инертностью, на которую можно воздействовать только щелочной плавкой (слиянием) при температурах около 1000° С. При поверхностном преобразовании получается слой окиси алюминия; вес его может колебаться от 2 до 4 граммов окиси на квадратный метр. В результате анодирования увеличивается твёрдость алюминия, повышается устойчивость пластин к механическим и химическим воздействиям, а также увеличивается тиражестойкость печатных форм. После зернения и анодного оксидирования поверхность алюминия становится шероховатой и покрывается прочной пористой оксидной плёнкой, которая после наполнения её гидрофильным коллоидом приобретает устойчивые гидрофильные свойства. Затем на подготовленную алюминиевую основу наносится копировальный слой [3, 13]. Его толщина на пластине должна быть номерной (2—4 мкм), так как копировальный слой отвечает за многие показатели формной пластины. Копировальные слои делятся на позитивные и негативные. После экспонирования позитивные слои становятся растворимыми, а негативные теряют способность растворяться.

Общие требования к копировальным  слоям:

—способность образовывать при нанесении тонкую равномерную  беспористую плёнку;

—хорошая адгезия к  подложке;

—изменение растворимости  в соответствующем растворителе в результате воздействия излучения;

—достаточная разрешающая  способность;

—высокая избирательность  проявления, т.е. отсутствие растворимости  будущих печатающих элементов;

—стойкость к агрессивным  средам.

 

 

Свойства копировального слоя и основы определяют характеристики будущей печатной формы.

1) светочувствительность;

2) разрешающая способность;

3) градационная передача;

4) шероховатость;

5) тиражестойкость.

 

Светочувствительность определяет время экспонирования пластины. Чем выше светочувствительность, тем меньше времени надо затратить на экспонирование. Различие между негативной и позитивной пластиной в том, что они различным образом реагируют на свет: негативный светочувствительный материал при попадании на него света полимеризируется и становится нерастворимым. При проявлении неэкспонированный "лак" растворяется; таким образом, получается пластина, значения которой противоположны значениям первоначального монтажа. Спектр чувствительности негативной пластины похож на спектр позитивной пластины, но абсолютные величины выше (рис.5, 6).

 

   

Рис.5. Спектральная негативной пластины

Рис.6. Спектральная чувствительность чувствительность позитивной пластины

 

Спектральная  светочувствительность определяет чувствительность копировального слоя к воздействию излучения различными длинами волн. Для копировальных слоев в основе ортонафтофинондиазидов актиничным является ултрафиолетовое излучение с длиной волны 330-450 нм.

Интегральная светочувствительность  определяет время экспонирования пластин  в копировальной раме.

 

 

 

 

 

Факторы, влияющие на светочувствительность:

 

—химический состав копировального слоя;

—физические параметры копировального слоя и подложки (коэффициент отражения, адгезия копировального слоя и подложки, толщина копировального слоя);

—условия экспонирования (спектральный состав излучения, экспозиция);

—условия обработки копировального слоя. Светорассеивание ухудшает качество. Для уменьшения светорассеивания требуется  экспонировать меньше по времени, что  требует применения очень мощных источников излучения. Чем меньше толщина копировального слоя печной формы, тем выше светочувствительность, поэтому, чем толщина копировального слоя больше, тем экспозиция должна быть больше.

Разрешающая способность определяет процент воспроизводимой растровой точки и минимально возможную ширину штриха.

 

На  разрешающую способность влияют:

 

—толщина копировального слоя (чем она больше, тем ниже разрешающая способность);

—режим проявления и состав обрабатывающего раствора;

—размеры источника излучения  и его расстояние от копировального слоя.

Градационная  передача зависит от возможности передачи растровых точек. На формах плоской офсетной печати, полученных способом форматной записи, минимальная растровая точка может быть 3-процентная, максимальная — 98-процентная. Контроль проводится как визуально, так и с помощью денситометра, позволяющего измерить относительный размер растровой точки на печатной форме.

Шероховатость поверхности основы характеризуется тремя параметрами: среднеарифметическим отклонением профиля; высотой микронеровностей; коэффициентом шероховатости. От шероховатости зависят адгезия копировального слоя к подложке и соответственно его устойчивость к механическому воздействию, требуемое количество увлажняющего раствора, стабильность качества изображения при печати. Шероховатость определяется средним арифметическим отклонением профиля – Ra (мкм).

Тиражестойкость определяется стойкостью копировального слоя к истиранию. После термообработки (обжига) она, как правило, увеличивается в два-три раза.

 

 

 

 

На  тиражестойкость оказывают влияние следующие факторы:

 

—нарушение технологии и  режимов копировального процесса (например, переэкспонирование, перепроявлние и др.);

—свойства печатных красок;

—сорт бумаги;

—характеристики увлажняющих  растворов и др. [13].

Специалисты проранжировали влияние свойств копировального слоя на характеристики будущей печатной формы, а именно на:

1.  светочувствительность;

2.  разрешающую способность;

3.  градационную передачу;

4.  шероховатость;

5.  тиражестойкость.

 

3. Цифровые формные  материалы

 

На протяжении целого столетия, и даже дольше, изображения фиксировали  на фотопленке и переносили на формную  пластину для изготовления печатных форм путем экспонирования фотоформ на пластину, покрытую светочувствительной  эмульсией. В течение последних  двадцати лет — и окончательно в последнее пятилетие — пленку вытесняют из допечатного процесса, а изображение регистрируется на формной пластине непосредственно из цифрового файла. В результате мы получаем изображение первой генерации, гораздо более четкое, чем может дать традиционное формное производство. При переносе изображения растискивание растровой точки на печатной форме ничтожно или вообще отсутствует, детали изображения не теряются и не искажаются.

Специалисты в области  прогнозирования утверждают, что  в течение пяти-десяти лет пленка окончательно исчезнет из полиграфии, за исключением, возможно, совсем небольших предприятий. Рассмотрим более подробно технологию Computer-To-Plate [8].

Итак, при традиционном способе  создания офсетной печатной формы конечным продуктом, который производит устройство записи изображения (imagesetter), является пленка. Формную пластину со светочувствительным полимерным покрытием помещают в копировальную раму с источником УФ - излучения высокой интенсивности. УФ - лучи просвечивают сквозь пленку и экспонируют пластину. После этого пластина проходит через проявочный процессор с трёхступенчатой обработкой, где происходит удаление полимерного слоя с пробельных участков. Готовую печатную форму высушивают, перед тем как использовать ее в печатной машине. В производственном процессе на основе технологии CtP запись изображения на формную пластину выполняют лазеры на основе цифровых данных. Если машина полностью автоматизирована, экспонирующее устройство захватывает пластину и доставляет ее в зону регистрации изображения. Далее в пластине могут пробить штифтовые отверстия для приводки в печатной машине (существуют системы экспонирования, которые могут выполнять пробивку как до, так и после экспонирования). Готовая печатная форма при изготовлении проходит те же стадии проявки и сушки, что и при традиционной технологии, но в системах CtP проявка может быть автоматизирована [2, 13].

Система CtP включает в себя три основные составляющие (рис. 7):

—компьютеры, которые обрабатывают цифровые данные и управляют их потоками;

—устройства записи на формные  пластины (устройства экспонирования, формовыводные устройства);

—формный материал (формные  пластины с различными копировальными слоями, чувствительными к определённым длинам волн) [2].

 

Рис. 7. Система  Computer-to-Plate

 

Существует много различных  типов лазеров, используемых для  изготовления печатных форм, они работают в различных частотных диапазонах и обладают различными показателями записи изображения. Все лазеры можно  разделить на две основные категории: близкие к инфракрасному спектру  термальные лазеры и лазеры видимого спектра излучения. Термальные лазеры экспонируют печатную пластину воздействием тепла, а пластины видимого спектра  производят запись воздействием света. Необходимо использовать пластины, специально разработанные для того или иного типа лазеров, иначе правильной регистрации изображения не произойдет; в равной степени это относится и к проявочным процессорам [2].

 

Типы формных  пластин

 

Основные типы формных  пластин для CtP представлены бумажными, полиэфирными и металлическими пластинами.

3.1 Бумажные пластины

Это самые дешевые пластины для CtP. Их можно увидеть в маленьких типографиях коммерческой печати, в салонах быстрой печати, для работ с низким разрешением, «грязных», для которых приводка не имеет значения. Тиражеустойчивость, или тиражестойкость таких форм — низкая, обычно менее 10000 оттисков. Разрешающая способность чаще всего не превышает 133 lpi [4].

3.2 Полиэстровые формные пластины

Эти пластины имеют более  высокую разрешающую способность, чем бумажные, в то же время они  дешевле металлических. Их применяют для работ среднего уровня качества для печати в одну и две краски — а также для четырехкрасочных заказов, — в том случае если цветопередача, приводка и четкость изображения не имеют критического значения.

Формный материал представляет собой полиэстеровую пленку толщиной около 0,15 мм, одна из сторон которой имеет гидрофильные свойства. Эта сторона воспринимает тонер, наносимый лазерным принтером или ксероксом. Участки, не покрытые тонером, в процессе печати удерживают на себе пленку увлажняющего раствора и отталкивают краску, тогда как запечатанные участки, наоборот, ее воспринимают. Поскольку это светочувствительные пластины, их загрузка в экспонирующее устройство выполняется в комнате со специальным освещением, так называемой «темной» или «желтой» комнате. Такие формные пластины доступны в формате до 40 дюймов, или 1000 мм, и толщиной 0,15 и 0,3 мм. Пластины толщиной 0,3 мм являются уже третьим поколением этого типа материалов, имеющим толщину, аналогичную толщине формных пластин на металлической основе для четырех и восьмикрасочных машин.

При установке на формном  цилиндре и превышении усилия натяжения  может возникнуть растяжение полиэстровой печатной формы. Также растяжение формы часто наблюдается на полноформатных машинах. В настоящий момент возможно использование полиэстровых печатных форм при полноцветной печати. При двух и четырехкрасочной печати чаще наблюдается растяжение бумаги, чем формы. Тиражестойкость полиэстровых форм составляет 20–25 тыс. оттисков. Максимальная линиатура 150–175 lpi.

Однако основное внимание сегодня сосредоточено на производстве металлических СtР-пластин. Фактически такая печатная форма стала сейчас стандартом [5, 11]. 

3.3 Металлические  пластины

Металлические пластины имеют  алюминиевую основу; они способны поддерживать самую резкую точку  и самый высокий уровень приводки. Существует четыре основных разновидности  металлических пластин: галогенидосеребряные пластины, фотополимерные пластины, термальные пластины, а также гибридные.

Информация о работе Переиздания