Турбулентность, турбулентное течение

Автор: Пользователь скрыл имя, 27 Октября 2012 в 16:39, реферат

Описание работы

Турбулентность (лат. turbulentus — бурный, беспорядочный), турбулентное течение — явление, заключающееся в том, что при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности.

Содержание

Введение…………………………………………………………………………3
Теория……………………………………………………………………………5
В советской науке ……………………………………………………………..11
Турбулентность в природе……………………………………………………12
Турбулентность в технике……………………………………………………..13
Виды турбулентности …………………………………………………………14
Литература……………………………………………………………………….15

Работа содержит 1 файл

Турбулентность.docx

— 40.80 Кб (Скачать)

Это позволило  Рейнольдсу в 1883 г. ввести положение, что течения одинакового типа (труба должна быть геометрически подобной) с одинаковым числом Рейнольдса подобны. Этот закон был назван законом подобия. Затем, на основе опытов, стала развиваться теория размерности и подобия.

Так как  Хаген не знал, как выглядят уравнения Навье-Стокса, что такое число подобия Рейнольдса, то нельзя говорить, что он или Леонардо да Винчи открыл турбулентность. Они наблюдали хаотическое движение в воде. Но описать количественно, предсказать его наступление не могли. А подобие течения, рождение самоподобных структур, например вихрей, которые сами состоят из таких же вихрей — основное свойство турбулентности.

То есть Рейнольдс как бы открыл то, что уравнение для силы гравитации и закон Кулона подобны с разницей только в коэффициенте. А Хаген и Пуазейль только нашли отдельные параметры, которые входят в точное решение уравнения Навье-Стокса и влияют на течение.

Частичное описание развитой турбулентности в  рамках математики XIX века предложил  Л. Ричардсон в начале XX века. Мешая  ложкой чай в стакане, мы создаём  вихри размером порядка размера стакана, ложки. Вязкость действует на течение тем сильнее, чем меньше характерный размер течения. Под характерным размером понимают какой-то геометрический параметр, сильно влияющий на течение. Диаметр стакана, его высота, ширина ложки. При большом числе Рейнольдса на эти крупномасштабные движения молекулярная вязкость действует слабо.

Уравнение движения жидкости (Навье-Стокса) нелинейно, так как скорость жидкости переносится самой скоростью и эти вихри неустойчивы. Они дробятся на более мелкие вихри, те на более мелкие. В конце концов на малых размерах вступает в действие молекулярная вязкость, и самые мелкие вихри затухают за счёт неё. Эта представление назвали прямой каскад (или переход от больших масштабов в меньшие).

Турбулентность  формально связана с биологическими объектами, с процессами митоза и роста некоторых раковых опухолей, с теорией радиоактивного распада, с процессами, происходящими на рынках акций.

Есть  разница между понятием турбулентность и турбулентное течение. Термин турбулентное течение возник в гидравлике. Затем были открыты квантовые жидкости. Их вязкость всегда равна нулю. Если подсчитать для них число Рейнольдса, оно всегда равно бесконечности, когда проекция вектора скорости не равна нулю. Само турбулентное течение может присутствовать в системе очень мелких вихрей, в некоторых малых частях среды. Поэтому, средняя скорость течения равна нулю, когда квантовая жидкость покоится в сосуде. Число Рейнольдса не определено (в числителе нулевая скорость, в знаменателе нулевая вязкость).

 

2. В советской науке

До 1917 года в российской науке пользовались термином беспорядочное течение. В 1938 году Капицей было открыто турбулентное течение в квантовых средах — сверхтекучем гелии. В жидком гелии есть два типа звука — первый и второй, они могут создавать волновую турбулентность на его поверхности.

В 1941 году А. Н. Колмогоровым и A. М. Обуховым создана теория однородной турбулентности для несжимаемых течений при больших числах Re. Затем в 60-е годы было начато изучение нелинейных волн, солитонов.

В 1970-е  годы в СССР Захаровым Владимиром Евгеньевичем была изучена слабая или  «волновая» турбулентность волн на поверхности  воды (её называют вырожденной). Турбулентность внутри сред назвали сильной.

В 1975 году введено понятие фрактал математиком Бенуа Мандельбротом. А константа Фейгенбаума, используемая при описании фрактальной среды с детерминированным хаосом, была получена в 1978. Тогда же был открыт сценарий Фейгенбаума (или субгармонический каскад) — частный вид перехода к турбулентности.

Физикам было непонятно, почему при хаотическом  движении, похожее на Броуновское, в  жидкости или газе вдруг миллиарды  молекул сворачиваются в кольцо. В начале 80 годов Ю. Л. Климонтович, профессор МГУ им. Ломоносова выдвинул гипотезу о том, что турбулентность — это не хаотичное, а высокоорганизованное, упорядоченное течение. И что энтропия при переходе от ламинарного к турбулентному течению уменьшается. Поэтому спонтанно образуются различные структуры. Он предложил свой критерий, на основе «S-теоремы» по которому можно было рассчитать степень упорядоченности сплошной среды, используя величину производства энтропии. Он не знал, что сценарий Фейгенбаума и другие их виды встречаются в реальных турбулентных средах и считал, что модели сплошной среды недостаточно для появления турбулентности. И значит в уравнении Навье-Стокса нет турбулентности. Поэтому даже для простого движения воды он вводил в уравнения некие искусственные дополнительные флуктуационные члены, что было ошибкой. Аналогично вводил дополнительные члены в уравнения сохранения импульса или движения О. Рейнольдс.

Его «S-теорема» была очень плохо изложена для экспериментаторов и было не понятно, как её применять в эксперименте и чем она лучше понятия K-энтропии. Она противоречила многолетней практике инженеров. Они часто использовали подход, когда энтропия была постоянной для течения (модель изэнтропического газа).

 

 

 

 

3. Турбулентность в природе

Животные  умеют пользоваться турбулентностью. Обычно они подавляют её и управляют  её структурой, умеют извлекать энергию  из набегающего потока (или ждут попутного ветра). Например, у некоторых  из них очень гладкая кожа. Форма  поверхности тела такова, что её кривизна — гладкая функция. То есть ваше изображение в зеркале, изготовленном в виде тела дельфина, будет плавно, без изломов меняться на большей части поверхности. Площадь, где кривизна претерпевает разрывы, минимальна. Они используют слизь на коже или перья, шерсть для разрушения поверхностных волн, которые потребляют много энергии, когда образуются при взмахе крыла или движении хвоста. Кончик крыла или плавника всегда острый, чтобы размер волны, образованной на конце, был минимальный. У китов есть канавки, проходящие вдоль тела от рта, создающие особую структуру турбулентного течения.

Мухи (за счёт волосков на теле), бабочки (под  микроскопом видны системы на крыльях, как решётки чешуек) и  птицы используют машущий полет. Они создают вихри в полете, которые позволяют им развить в разы большую подъёмную силу, чем планер того же веса, и достичь большей скорости, тратя меньше энергии.

 

 

 

4. Турбулентность в технике

Её стараются  либо подавить, либо искусственно создать. Например, при строительстве Норильского  комбината было обнаружено, что малый диаметр труб, в котором течение турбулентно, не приводит к увеличению расхода подаваемого воздуха в доменную печь при увеличении внешнего давления подаваемого воздуха. Поэтому были вынуждены поставить параллельно ещё одну трубу, подающую воздух. Причиной этого явления является звуковое запирание трубы, когда скорость потока в трубе достигает скорости звука и дальше расти не может.

У самолётов  ставят винглеты — загнутые кверху законцовки крыла. Они экономят до 4 процентов топлива, так как при этом уменьшается размер и число образуемых за крылом вихрей, которые уносят с собой полезную кинетическую энергию (это так называемые волновые потери).

В тех  случаях, когда возникает переходный режим от ламинарного к турбулентному, могут возникать колебания давления, подъёмной силы. Поэтому по всей длине крыла ставят вихрегенераторы (изогнутые скобы). Они стабилизируют параметры потока. Течение после них всегда турбулентно. Поэтому подъёмная сила крыла постепенно растёт с увеличением скорости самолёта.

Когда нужно  быстро перемешать топливо с воздухом и сжечь его, ставят специальные  устройства: центробежные и струйные форсунки в камере сгорания. Они, как  и выбранная длина камеры сгорания, обеспечивают полное сгорание топлива.

 

 

5. Виды турбулентности

  • Двумерная турбулентность. Получается в искусственно создаваемой мыльной плёнке воды толщиной от 4 до 5 микрон.
  • Оптическая турбулентность. Очень мощный луч лазера проходит через стекло и начинает рассеиваться хаотически, сам на себе. Свет — это волны, поэтому это турбулентность световых волн. Хаотичное мерцание звёзд на ночном небе связано с случайным изменением плотности воздуха. Это так же проявление турбулентности.
  • Речная турбулентность. Течение воды в реке турбулентно. Но за сотни тысяч лет русло реки не может не менять свою форму. Когда число Рейнольдса и расход меняется, река меняет шероховатость своего дна. Река — одна из самых совершенных самоуправляющихся систем в неорганическом мире.
  • В жидких кристаллах (нематиках), когда скорость среды равна нулю, наблюдается так называемая «медленная» турбулентность.
  • Химическая турбулентность. В частном случае, она может быть описана уравнением В. Н. Николаевского.
  • Кварк - глюонная плазма, которая существовала на ранней стадии Вселенной, описывается моделью идеальной жидкости (то есть уравнением Навье-Стокса с величиной вязкости, равной нулю). Это пример турбулентного состояния плазмы.

Однородная и изотропная

Изотропная — когда её статистические параметры не зависят от направления. Создаётся искусственно на некотором расстоянии после металлической сетки или решётки.

Однородная — когда её параметры меняются вдоль выбранной оси, но в данном сечении (например, трубы́) они одинаковы.

На поверхности  вибрирующейся многофазной жидкости. Например, в слое стеклянных сфер в кукурузном крахмальном сиропе при частоте 120 Гц и виброускорении в 25 g.

Литература

  1. Ландау Л.Д, Лифшиц Е. М. Гидродинамика, — М.: Наука, 1986. — 736 с.
  2. Монин А. С., Яглом А. М., Статистическая гидромеханика. В 2-х ч. — Санкт-Петербург: Гидрометеоиздат , Ч. 1, 1992. — 695 с;, Москва, Наука Ч. 2, 1967. — 720 с.
  3. Обухов А. М. Турбулентность и динамика атмосферы «Гидрометеоиздат» 414 стр. 1988 ISBN 5-286-00059-2
  4. Проблемы турбулентности. Сборник переводных статей под ред. М. А. Великанова и Н. Т. Швейковского. М.-Л., ОНТИ, 1936. — 332 с.
  5. Д. И. Гринвальд, В. И. Никора, «Речная турбулентность», Л.,Гидрометеоиздат, 1988,152 с.
  6. П. Г. Фрик. Турбулентность: модели и подходы. Курс лекций. Часть I. ПГТУ, Пермь, 1998. — 108 с. Часть II. — 136 с.
  7. П. Берже, И. Помо, К. Видаль, Порядок в хаосе, О детерминистическом подходе к турбулентности, М, Мир, 1991, 368 с.
  8. Д. Глейк, Хаос, Создание новой науки, 1988,Penguin books, 354 с (написана журналистом для школьников и студентов)
  9. Ю. Л. Климонтович, Статистическая теория открытых систем, Москва, ТОО Янус, 1995. −624 с.
  10. Г. Голдстейн, Классическая механика,Кембридж, 1950, 408 с.
  11. Л. Ц. Аджемян, М. Ю. Налимов,Принцип максимальной хаотичности в статистической теории развитой турбулентности. II. Изотропная затухающая турбулентность,1992.

 


Информация о работе Турбулентность, турбулентное течение