Автор: Пользователь скрыл имя, 27 Октября 2012 в 16:39, реферат
Турбулентность (лат. turbulentus — бурный, беспорядочный), турбулентное течение — явление, заключающееся в том, что при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности.
Введение…………………………………………………………………………3
Теория……………………………………………………………………………5
В советской науке ……………………………………………………………..11
Турбулентность в природе……………………………………………………12
Турбулентность в технике……………………………………………………..13
Виды турбулентности …………………………………………………………14
Литература……………………………………………………………………….15
МИНИСТЕРСТВО ОБРАЗОВАНИЕ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО
ФИЛИАЛ УФИМСКОГО ГОСУДАРСТВЕННОГО НЕФТЯНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА В Г. ОКТЯБРЬСКОМ
Кафедра РРМГМ
Реферат
по курсу: «Механика сплошной среды»
на тему: «Турбулентность»
Выполнил:
ст.гр. БГР-09-11
Проверил:
профессор
2012
Введение…………………………………………………………
Теория………………………………………………………………
В советской науке ……………………………………………………………..11
Турбулентность
в природе……………………………………………………
Турбулентность
в технике…………………………………………………….
Виды турбулентности …………………………………………………………14
Литература……………………………………………………
Введение
Турбулентность (лат. turbulentus — бурный, беспорядочный), турбулентное течение — явление, заключающееся в том, что при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности.
Турбулентность экспериментально открыта английским инженером Рейнольдсом в 1883 году при изучении течения несжимаемой жидкости (воды) в трубах.
Для возникновения
турбулентности необходима сплошная среда,
которая подчиняется
Обычно турбулентность наступает при превышении некоторого критического параметра, например числа Рейнольдса или Релея (в частном случае скорости потока при постоянной плотности и диаметре трубы и/или температуры на внешней границе среды).
При определённых параметрах турбулентность наблюдается в потоках жидкостей и газов, многофазных течениях, жидких кристаллах, квантовых Бозе- и Ферми- жидкостях, магнитных жидкостях, плазме и любых сплошных средах (например, в песке, земле, металлах). Турбулентность также наблюдается при взрывах звёзд, в сверхтекучем гелии, в нейтронных звёздах, в лёгких человека, движении крови в сердце, при турбулентном (т. н. вибрационном) горении.
Турбулентность
возникает самопроизвольно, когда
соседние области среды следуют
рядом или проникают один в
другой, при наличии перепада давления
или при наличии силы тяжести,
или когда области среды
Турбулентность, например, можно создать:
1. Теория
При больших числах Рейнольдса, скорости потока от небольших изменений на границе зависят слабо. Поэтому при разных начальных скоростях движения корабля формируется одна и та же волна перед его носом, когда он движется с крейсерской скоростью. Нос ракеты обгорает и создаётся одинаковая картина разгара, несмотря на разную начальную скорость.
Фрактальный — означает самоподобный. У прямой линии фрактальная размерность равна единице. У плоскости равна двум. У шара трём. Русло реки имеет фрактальную размерность больше 1, но меньше двух, если рассматривать его с высоты спутника. У растений фрактальная размерность вырастает с нуля до величины больше двух. Есть характеристика геометрических фигур, называется фрактальная размерность. Наш мир нельзя представить в виде множества линий, треугольников, квадратов, сфер и других простейших фигур. И фрактальная размерность позволяет быстро характеризовать геометрические тела сложной формы. Например, у осколка снаряда.
Нелинейная волна — волна, которая обладает нелинейными свойствами. Их амплитуды нельзя складывать при столкновении. Их свойства сильно меняются при малых изменениях параметров. Нелинейные волны называют диссипативными структурами. В них нет линейных процессов дифракции, интерференции, поляризации. Но есть нелинейные процессы, например, самофокусировка. При этом резко, на порядки увеличивается коэффициент диффузии среды, перенос энергии и импульса, сила трения на поверхность.
То есть,
в частном случае, в трубе с
абсолютно гладкими стенками при
скорости выше некоторой критической,
в течение любой сплошной среды,
температура которой
В частном случае нелинейные волны — вихри, торнадо, солитоны и другие нелинейные явления (например, волны в плазме — обычные и шаровые молнии), происходящие одновременно с линейными процессами (например акустическими волнами).
На математическом языке турбулентность означает, что точное аналитическое решение дифференциальных уравнений в частных производных сохранений импульса и сохранения массы Навье-Стокса (это закон Ньютона с добавлением сил вязкости и сил давления в среде и уравнение неразрывности или сохранения массы) и уравнение энергии представляет собой при превышении некоторого критического числа Рейнольдса, странный аттрактор. Они представляют нелинейные волны и обладают фрактальными, самоподобными свойствами. Но так как волны занимают конечный объём, какая-то часть области течения ламинарна.
При очень малом числе Рейнольса — это всем известные линейные волны на воде небольшой амплитуды. При большой скорости мы наблюдаем нелинейные волны цунами или обрушение волн прибоя. Например, крупные волны за плотиной распадаются на волны меньших размеров.
Вследствие нелинейных волн любые параметры среды: (скорость, температура, давление, плотность) могут испытывать хаотические колебания, изменяются от точки к точке и во времени непериодически. Они очень чувствительны к малейшим изменением параметров среды. В турбулентном течении мгновенные параметры среды распределены по случайному закону. Этим турбулентные течения отличаются от ламинарных течений. Но управляя средними параметрами, мы можем управлять турбулентностью. Например, изменяя диаметр трубы, мы управляем числом Рейнольдса, расходом топлива и скоростью заполнения бака ракеты.
Уравнения Навье — Стокса (обычные, а не усреднённые по какому-то интервалу времени) описывают и мягкую, и жёсткую потерю устойчивости течений. Их можно вывести тремя способами из общих законов сохранения: постулируя закон трения Ньютона(обобщённый), следуя методу Чепмена-Энскога и из метода Грэда.
При вязкости равной нулю уравнения сводятся к уравнению Эйлера. Точные решения уравнения Эйлера также хаотичны.
Общепринято считать проекцию вектора скорости на ось координат в турбулентном потоке, состоящей из средней или осредненной величины, за некоторое выбранное время, и плюс мгновенной составляющей:
U = Ucp + u' = 100 м/c + 0.5 м/с.
Здесь u' — пульсационная составляющая или пульсация. Удобно оказалось ввести степень турбулентности:
e = 100 %*u'/Ucp = 100 %*0.5/100 = 0,5 %.
Для трёх осей: e = (u' + v' + w')/Ucp.
Турбулентное течение с большим числом Рейнольдса называют развитой турбулентностью. При разных граничных условиях оно всегда приводит к созданию одного и того же профиля скоростей. Это свойство независимости параметров от числа Рейнольдса называют автомодельностью течения. Наблюдается экспериментально в струях или в пограничном слое.
Можно создать изотропную турбулентность, когда статистические параметры течения (функция распределения вероятности, дисперсия, моменты) одинаковы в направлении разных осей координат и не зависят от времени.
Теория однородной турбулентности (то есть, при очень больших числах Рейнольдса, когда её статистические параметры не зависят от времени и примерно постоянны в течении, но зависят от направления) была создана советскими учёными Обуховым и Колмогоровым. И использовалась затем во многих инженерных расчётах. Теория привела к созданию упрощённых полуэмпирических моделей течения: k-ε (ка-эпсилон) и многих других.
Большинство течений жидкостей и газов в природе (движение воздуха в земной атмосфере, воды в реках и морях, газа в атмосферах Солнца и звёзд и в межзвёздных туманностях и т. п.), в технических устройствах (в трубах, каналах, струях, в пограничных слоях около движущихся в жидкости или газе твёрдых тел, в следах за такими телами и т. п.) турбулентны из-за наличия источников энергии и импульса, наличия внешних возмущающих сил или отсутствия сил сопротивления трения в квантовых жидкостях.
При процессах горения или химических реакциях на явление турбулентности накладываются множество других физических и химических процессов. Например, эффект конвекции, автоколебаний, гистерезиса. В этом случае говорят о турбулентной конвекции. Обычно принимается, что переход от ламинарного течения к турбулентному происходит при достижении критического числа Рейнольдса (Re). Критическое значение числа Рейнольдса зависит от конкретного вида течения, его коэффициента вязкости, который зависит от температуры, которое зависит от давления (течение в круглой трубе, обтекание шара и т. п.). Например, для течения в круглой трубе . В последнее время показано, что это правомерно только для напорных потоков. Но удар по трубе, её резкое вращение или колебание могут вызвать появление турбулентности.
То есть, турбулентность может возникать самопроизвольно, а может в результате действий нескольких внешних сил.
При изучении течения жидкости через трубки малого диаметра французским врачом и учёным Пуазейлем в 1840—1842 гг. выведена формула, по которой можно рассчитать расход воды через трубу.[1][2] До Пуазейля исследованием движения вязкой жидкости через трубы малого диаметра занимался Хаген (1797—1884). При большом расходе формула оказалась неверной. Причина в том, что в трубе возникала турбулентность.
Стоксом, английским учёным-теоретиком были найдены решения уравнения движения вязкой жидкости для малых чисел Re (это второй закон Ньютона с добавками сил давления и сил вязкости), которые он вывел в 1845 г. для движения жидкости в круглой трубе. Затем он получил формулу силы сопротивления при равномерном движении шара в неограниченной жидкости в 1851 году. Её стали использовать для определения коэффициента динамической вязкости. Но решения совпали с опытом лишь при малых скоростях движения жидкости и диаметрах трубы и шара.
Причина этого расхождения была объяснена только опытами Рейнольдса в 1883 г. Он показал существование двух различных режимов движения жидкости — ламинарного и турбулентного — и нашёл один параметр — число Рейнольдса — который позволил предсказать, наличие турбулентности для данного течения в трубе. Если бы Стокс нашёл точные решения Навье-Стокса, он бы обнаружил турбулентность теоретически.