Автор: Пользователь скрыл имя, 11 Июня 2013 в 16:21, курсовая работа
При проектировании и эксплуатации электрических установок, электрических станций, подстанций и систем требуется предварительно произвести ряд расчетов, направленных на решение многих технических вопросов и задач, таких как:
а) сопоставление, оценка и выбор схемы электрических соединений станций и подстанций;
б) выявление условий работы потребителей при аварийных режимах;
в) выбор аппаратов и проводников, их проверка по условиям работы при коротких замыканиях;
г) проектирование и настройка устройств релейной защиты и автоматики;
д) ряд других задач.
ВВЕДЕНИЕ
1. ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА
1.1. Технология перекачки нефти
1.2. Нефтеперекачивающие станции
1.3. Линейная часть нефтепровода
1.4 Основное электрооборудование НПС
2. РАЗРАБОТКА СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ НПС
2.1. Разработка схемы электроснабжения НПС
2.2. Схема электроснабжения НПС
2.3 Расчет электрических нагрузок на стороне высшего напряжения трансформаторной подстанции 35/10 кВ при НПС
2.4. Выбор числа и мощности трансформаторов
3 РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ
3.1. Расчет токов короткого замыкания в относительных единицах
4 ВЫБОР ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ И ТИПОВЫХ ЯЧЕЕК КРУ-10 кВ
4.1. Выбор сечения и марки кабелей
4.2 Выбор ячеек КРУ
4.3. Выбор шин
4.4. Выбор выключателей
4.5. Выбор трансформаторов тока
4.6. Выбор трансформаторов напряжения
4.7. Выбор предохранителей
4.8. Выбор ограничителей перенапряжения
5. ВЫБОР И РАСЧЕТ РЕЛЕЙНОЙ ЗАЩИТЫ
5.1. Назначение релейной защиты
5.2. Функции БМРЗ
5.3. Функции сигнализации
5.4. Защита асинхронных двигателей ВАОВ-630 L-4У1
5.6. Расчёт защиты двигателя подпорных насосов
5.6.1. Расчёт токовой отсечки для электродвигателя
5.6.2. Расчёт МТЗ для электродвигателя
5.7. Выбор источников оперативного тока
6. ПРОИЗВОДСТВЕННАЯ И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ
6.1. Введение
6.2. Анализ опасных и вредных факторов на химических объектах
6.3. Промышленная безопасность при эксплуатации цеховой комплектной трансформаторной подстанции
6.4. Расчет защитного заземления
6.5 Производственная санитария
6.6. Защита от электромагнитных полей
6.7. Производственное освещение
6.8. Пожарная безопасность
6.9 Средства пожаротушения
6.10. Профилактические мероприятия, предупреждающие возникновение пожаров
6.11. Чрезвычайные ситуации
6.12. Защита технологического оборудования
6.13. Повышение надежности снабжения электроэнергией, паром и водой
6.14. Охрана окружающей среды
7. ЛОКАЛЬНАЯ СМЕТА НА СТРОИТЕЛЬСТВО И МОНТАЖ ПОДСТАНЦИИ 35/10 КВ
8. ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ……………………………
Нефть относится к взрывоопасным жидкостям с температурой вспышки около -20 С0. В соответствии с таблицей 7.3.3.[2] категория смеси паров нефти и воздуха - IIA, группа смеси - Т3.
1.3. Линейная часть нефтепровода
Линейная часть нефтепровода – наиболее дорогая и ответственная часть магистрального нефтепровода. Капитальные затраты на нее в ряде случаев достигают 80% от общей стоимости трубопровода. Аварии на линейной части – разрывы труб, и утечки из трубопровода – вызывают остановку трубопровода и наносят большой ущерб народному хозяйству. При проектировании и эксплуатации линейной части нефтепровода учитываются максимально возможные давления, возникающие на каждом участке нефтепровода. Давление на каждом участке трубопровода зависит как от режима перекачки, так и от профиля местности. Наибольшее давление обычно бывает на выходе из НПС, а также в наиболее низких местах трассы, в частности, в горных районах после перевальных точек. При построении расчетной эпюры давлений в магистральном нефтепроводе, станции которого работают “из насоса в насос”, учитываются давления, возникающие как при работе всех станций, так и при работе только одной головной станции.
На линейной части
1.4 Основное электрооборудование НПС
Основным оборудованием нефтеперекачивающих станций являются насосы (основные и подпорные) и их приводы.
К основным насосам, перекачивающим нефть по магистральным нефтепроводам, предъявляются следующие требования: экономичность, надежность и долговременность непрерывной работы; простота конструкции; компактность. Поскольку этим требованиям наилучшим образом отвечают центробежные насосы, они и получили преимущественное распространение на магистральных нефтепроводах. Поршневые насосы для транспортировки нефти по магистральному трубопроводу применяются весьма ограниченно, в основном для перекачки высоковязких жидкостей. Магистральные центробежные насосы серии НМ, используемые в настоящее время, имеют частоту вращения 3000 об/мин. Определяется это тем, что с увеличением частоты вращения возрастают скорости входа жидкости в насос, в результате чего может наступить кавитация. Обычно в каждой насосной нефтепровода устанавливают четыре центробежных насоса, соединенных последовательно и создающих давление до нескольких МПа. Насосы НМ имеют монотонно падающую напорную характеристику, позволяющую иметь устойчивую работу в достаточно широком диапазоне расходов. Однако пределы регулирования, обеспечивающие экономичный режим работы, при последовательном соединении насосов невелики.
Для нормальных условий эксплуатации основные центробежные насосы обеспечиваются подпором. В качестве подпорных насосов применяют насосы серий НМП, НДвН, НДсН и НПВ. Чтобы создать хорошую всасывающую способность, подпорные насосы эксплуатируют при сравнительно низкой частоте вращения вала (730-1450 об/мин), они имеют одно рабочее колесо с двухсторонним подводом жидкости. Приводом подпорных насосов являются низковольтные и высоковольтные электродвигатели. Наиболее совершенной конструкцией подпорных насосов являются насосы вертикального типа (серии НВП). Основное их достоинство заключается в том, что отпадает необходимость в строительстве традиционной подпорной насосной, как правило, заглубленной по отношению к отметке земли. Насосы этого типа можно устанавливать непосредственно в резервуарном парке, что значительно сокращает потери на трение во всасывающих трубопроводах.
В качестве привода к основным насосам используются асинхронные и синхронные электродвигатели высокого напряжения. Из асинхронных часто применяют электродвигатели с короткозамкнутым ротором серии АТД. Двигатели серии АТД монтируют в одном здании с насосами, поскольку они во взрывобезопасном исполнении, в корпусе двигателя поддерживается небольшое избыточное давление воздуха, что исключает возможность попадания в него паров нефти, а следовательно, загорания или взрыва двигателя. Однако при использовании двигателей серии АТД мощностью от 2,5 до 8 МВт требуется установка в стационарных помещениях дорогостоящих статических конденсаторов большой мощности, которые из-за значительных колебаний нагрузки станций и температуры окружающей среды часто выходят из строя. Кроме того, для надежной работы станции в закрытом распределительном устройстве 6-10 кВ необходимо устанавливать высоковольтное электрооборудование, что усложняет схему электроснабжения и эксплуатацию станции, а также требует дополнительных затрат. Для привода магистральных насосов нашли широкое применение синхронные двигатели серии СТД. Синхронные двигатели более надежны, чем асинхронные, обладают лучшими показателями по устойчивости, что особенно важно при снижении напряжения в сети. Использование синхронных электродвигателей позволяет использовать их в качестве компенсирующего устройства реактивной мощности, что упрощает систему электроснабжения НПС, т.к. в этом случае отпадает необходимость в установке батарей статических конденсаторов, дополнительных ячеек распределительного устройства и кабелей. Синхронные электродвигатели дороже, чем аналогичные асинхронные, однако, лучшие энергетические характеристики синхронных двигателей делают их применение эффективным.
В табл. 1.1 и табл. 1.2, приведены технические
данные насосов, установленных на НПС:
Таблица 1.1
Технические данные магистрального насоса НМ 3600-230
Производительность |
Q=3600 м3/час; |
Напор |
Н=230 м; |
Номинальная частота вращения |
n=1500 об/мин; |
КПД |
hнас=0,83; |
Допустимый кавитационный запас |
K=37 м; |
Мощность (на нефти) |
Р=2370 кВт. |
Таблица 1.2
Технические данные магистрального насоса НПВ 2500-80
Производительность |
Q=2500 м3/час; |
Напор |
Н=80 м; |
Номинальная частота вращения |
n=1000 об/мин; |
КПД |
hнас=0,83; |
Допустимый кавитационный запас |
K=3 м; |
Мощность (на нефти) |
Р=792 кВт. |
В табл. 1.3 приведены электродвигатели, находящиеся на НПС:
Таблица 1.3
Наименование потребителя |
Количество, шт. |
Расчетная мощность, кВт |
|
СТДП-2500-2УХЛ4 |
4 |
2500 |
0,9 |
ВАОВ-6300L-4У1 |
4 |
800 |
0,9 |
Система электроснабжения должна обеспечивать стабильную и непрерывную подачу электроэнергии к НПС "Суторминская". Так как НПС является потребителем I категории [3], то ее питание должно осуществляться от двух независимых, взаиморезервируемых источников.
Исходными данными при разработке проекта электроснабжения объектов нефтяной и газовой промышленности являются величина электрической нагрузки потребителей, а также место расположения ближайших источников электроэнергии и их параметры. Такими источниками, как правило являются главные понижающие подстанции (ГПП) с двумя трансформаторами.
Основные условия проектирования рациональной схемы электроснабжения – надежность, экономичность и качество электроэнергии у потребителя. Для крупных предприятий наиболее надежной и экономичной является система электроснабжения с применением глубоких вводов, при которой сети 6-110 кВ максимально приближены к потребителям электроэнергии.
Система электроснабжения строится таким образом, чтобы все её элементы постоянно находились под нагрузкой, т.е. чтобы не было холодного резерва. Вместе с тем параллельно установленные трансформаторы и параллельные линии электропередачи должны работать раздельно, так как при этом снижаются токи короткого замыкания и удешевляются схемы коммутации и схемы релейных защит.
Согласно ПУЭ, потребители относятся к первой категории в отношении бесперебойности питания.
Это предъявляет к системе электроснабжения следующие требования:
Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части.
2.2 Схема электроснабжения НПС
Рис. 2.1. Схема электроснабжения НПС
На рис. 2.1. в соответствии с заданием приведена схема электроснабжения НПС для перекачки нефти по трубопроводу.
Трансформаторы Т1 и Т2 35/10 кВ в нормальном режиме работают раздельно, каждый на свою секцию шин КРУ.
Автоматическое включение резерва на стороне низшего напряжения производится с помощью секционного выключателя. (Q4).
Питание подводится по двум одноцепным взаиморезервируемым ЛЭП 35кВ. Питание высоковольтных двигателей и трасформаторов 10/0,4кВ производится от двух, взаиморезервируемых секций шин КРУ (рис. 2.1).
Питание цепей
защиты и управления
2.3 Расчет электрических нагрузок на стороне высшего напряжения трансформаторной подстанции 35/10 кВ при НПС
Для расчета электрических нагрузок на стороне ВН, воспользуемся методикой, разработанной институтом Гипротюменьнефтегаз. В основе метода используется модель распределения в виде двухступенчатой кратчайшей функции.
Расчетная активная мощность высоковольтных двигателей по этому методу определяется следующим образом:
при С £ 0,75 М (2.4.2)
при С > 0,75 М (2.4.3)
где
где Кв - коэффициент включения, Кв = 0,84;
Кз - коэффициент загрузки двигателей, Кз = 0,76 – 0,84;
Рном-номинальная активная мощность единичного электродвигателя.
Примем Кз = 0,84, т. е. его максимальное значение. Тогда средняя мощность определится:
Максимальная мощность:
Разделим С на М и получим:
С/М = 6,42 / 9,1 = 0,70 < 0,75
Следовательно, расчетную активную мощность высоковольтных электродвигателей определим по формуле:
=0,9 соответственно заданию. Коэффициент мощности является опережающим, поэтому реактивная мощность принимается со знаком минус.
Реактивная мощность высоковольтных электродвигателей НПС равна:
Полная мощность высоковольтных электродвигателей составит:
Категорию проектируемого объекта по надежности электроснабжения принимают в соответствии с ПУЭ [13].
К первой категории относятся потребители, отключение электроснабжения которых влечет за собой опасность для жизни людей, ущерб народному хозяйству, повреждение оборудования, нарушение сложного технологического процесса.
К второй категории - массовый срыв выпуска продукции, простой рабочих, механизмов, промышленного транспорта, нарушение нормальной деятельности значительного количества городских жителей.
К третьей категории - все остальные потребители. Для потребителей третьей категории рекомендуется применять подстанцию с одним трансформатором.
Электроприёмники установок по добыче, подготовке и транспортировке нефти и газа практически все относятся к первой категории надежности. Для электроснабжения потребителей первой категории надежности должны быть предусмотрены два независимых источника электроснабжения.
Согласно руководящим документам для большинства объектов нефтяной и газовой промышленности в районах Западной Сибири с учетом сложности размещения и эксплуатации подстанций рекомендовано выбор единичной мощности трансформаторов и автотрансформаторов двухтрасформаторных подстанций производить из условия 100% резервирования электроснабжения потребителей. Сюда отнесены объекты нефтедобычи, переработки попутного газа, компрессорные станции магистральных газопроводов с газотурбинными приводными агрегатами, нефтеперекачивающие станции магистральных нефтепроводов.