Автор: Пользователь скрыл имя, 16 Февраля 2013 в 22:22, курсовая работа
В данной работе электропривод рассматривается как общепромышленная установка, в качестве которой выступает подъемный механизм крана. Целью работы является закрепление, углубление и обобщение знаний в области теории электропривода путем решения комплексной задачи проектирования электропривода конкретного производственного механизма (механизма подъема крана). В выпускной работе охватываются такие вопросы, как выбор схемы электропривода, разработка системы управления электроприводом, анализ динамических свойств замкнутой и разомкнутой системы, расчет энергетических показателей электропривода. Основное внимание уделяется задаче регулирования координат (тока и скорости).
АННОТАЦИЯ
Лагутин Д.В. Электропривод подъемного механизма крана
В работе приведен выбор схемы электропривода подъемного механизма крана, выбран и проверен двигатель, а также силовые элементы. Исследованы статические и динамические свойства системы и рассчитаны энергетические показатели за цикл работы привода.
Страниц 50, рисунков 15.
Рассматривая все многообразие современных производственных процессов, в каждом конкретном производстве можно выделить ряд операций, характер которых является общим для различных отраслей народного хозяйства. К их числу относятся доставка сырья и полуфабрикатов к истокам технологических процессов и межоперационные перемещения изделий в процессе обработки, погрузочно-разгрузочные работы на складах, железнодорожных станциях и т. д.
Механизмы, выполняющие подобные операции, как правило, универсальны и имеют общепромышленное применение, в связи, с чем и называются общепромышленными механизмами. Общепромышленные механизмы играют в народном хозяйстве страны важную роль.
На промышленных предприятиях наиболее распространенным и универсальным подъемно-транспортным устройством является кран, основным механизмом которого является механизм подъема, который снабжается индивидуальным электроприводом.
Основные механизмы таких установок, как правило, имеют реверсивный электропривод, рассчитанный для работы в повторно-кратковременном режиме. В каждом рабочем цикле имеют место неустановившиеся режимы работы электропривода: пуски, реверсы, торможения, оказывающие существенное влияние на производительность механизма, на КПД установки и на ряд других факторов. Все эти условия предъявляют к электроприводу сложные требования в отношении надежности и безопасности. От технического совершенства электроприводов в значительной степени зависят производительность, надежность работы, простота обслуживания. Кран позволяет избавить рабочих от физически тяжелой работы, уменьшить дефицит рабочих в производствах, отличающихся тяжелыми условиями труда.
В данной работе электропривод рассматривается как общепромышленная установка, в качестве которой выступает подъемный механизм крана. Целью работы является закрепление, углубление и обобщение знаний в области теории электропривода путем решения комплексной задачи проектирования электропривода конкретного производственного механизма (механизма подъема крана). В выпускной работе охватываются такие вопросы, как выбор схемы электропривода, разработка системы управления электроприводом, анализ динамических свойств замкнутой и разомкнутой системы, расчет энергетических показателей электропривода. Основное внимание уделяется задаче регулирования координат (тока и скорости).
Электропривод подъемного механизма крана.
Грузоподъемность, кг |
3000 |
Масса захватного приспособления, кг |
25 |
Диаметр барабана, мм |
490 |
Передаточное число редуктора |
85 |
Кратность полиспаста |
1 |
КПД передачи |
0,8 |
Скорость подъема, м/мин |
25 |
Высота подъема, м |
12 |
Продолжительность включения механизма, % |
15 |
Система электропривода: электропривод
постоянного тока по системе
ТП-Д. Пуск и торможение производится при
линейном изменении э.д.с. преобразователя
в функции времени.
Требования, предъявляемые к электроприводу.
При разработке электропривода крана должны быть соблюдены следующие требования в отношении его характеристик:
Для осуществления автоматического
регулирования
Все вышеперечисленные системы имеют ряд преимуществ и недостатков, анализ которых при учете предъявляемых технических требований и специфики производственного механизма позволяет осуществить правильный выбор системы регулирования.
Так, в настоящее время продолжает успешно применяться система Г-Д. Ее основными достоинствами являются отсутствие искажений потребляемого из сети тока и относительно небольшое потребление реактивной мощности. При применении синхронного двигателя в преобразовательном агрегате путем регулирования тока возбуждения можно обеспечить работу ЭП с cosj для компенсации реактивной мощности, потребляемой другими установками.
К сожалению, системе
Г-Д присущи несколько
Существенные преимущества асинхронного двигателя определяют несомненную перспективность системы ПЧ-АД. Однако регулирование частоты представляет собой технически более сложную задачу, чем регулирование выпрямленного напряжения, так как, как правило, требует дополнительных ступеней преобразования энергии. Коэффициент полезного действия системы ПЧ-АД ниже, чем в системе ТП-Д, ниже быстродействие и экономичность.
Рассматривая способ
реостатного регулирования
В выпускной работе разрабатывается электропривод постоянного тока по системе ТП-Д. Эта система в настоящее время наиболее широко используется из-за ее несомненных преимуществ. Она более экономична, обладает высоким быстродействием (постоянная времени Тп при полупроводниковой СИФУ не превосходит 0,01 с), имеет довольно высокий КПД. Потери энергии в тиристорах при протекании номинального тока составляет 1-2% номинальной мощности привода.
Недостатками тиристорного преобразователя является изменяющийся в широких пределах cosj»cosa, и значительное искажение формы потребленного из сети тока.
Схему преобразователя выберем мостовую реверсивную с совместным согласованным управлением.
Рис. 1. Кинематическая схема механизма.
Статические моменты при подъеме и спуске:
Нм
Нм,
где g – ускорение свободного падения,
mгр, mзп – масса груза и захватного приспособления,
Rб – радиус барабана лебедки,
iр – передаточное число редуктора,
iп – передаточное число полиспаста,
h - КПД передачи.
Время цикла:
tц=tпод+tсп+2tп=tр+tп,
где tпод – время подъема,
tсп – время спуска,
tп – время паузы,
tр – время работы.
tпод=tсп=h/v=12/(25/60)=12/0,
где h – высота подъема,
v – скорость подъема.
Продолжительность включения:
ПВ= tр/tц
Значит, tц= tр/ПВ=57,554/0,15=383,693 с
tп=0,5(tц- tр)=0,5(83,693-57,554)=163,07 с
Рис. 2. Нагрузочная диаграмма производственного механизма.
Полагая, что двигатель выбирается из режима S1, эквивалентный момент за цикл работы:
Нм
Угловая скорость двигателя, соответствующая V=12 м/мин:
1/с
Номинальная мощность двигателя:
кВт,
где kз=1,3 – коэффициент, учитывающий отличие нагрузочной диаграммы механизма от нагрузочной диаграммы двигателя.
Условия выбора двигателя:
Рн³Рэкв и wн»wрасч выбираем, пользуясь [1] двигатель постоянного тока независимого возбуждения 2ПФ160МУХЛ4
Р=7,5 кВт; U=220 В; n=1500 об/мин; nmax=4200 об/мин; КПД=83%; Rя=0.145 Ом; Rдоп=0,101 Ом; Rв=53,1 Ом; Lя=4 мГн; Jдв=0,083 кг*м2; класс изоляции – В.
Построив нагрузочную диаграмму двигателя, проверим его по условиям нагрева и допустимой перегрузки.
Суммарный момент инерции:
JS=1,2Jдв+Jмех=1,2*0,083+0,
где Jмех – момент инерции механизма.
кг*м2
Динамический момент:
Нм,
где Мном – номинальный момент двигателя.
Нм
Угловое ускорение:
1/с2
Время работы привода с ускорением:
с
Высота, на которую поднят груз за время ускорения:
м
Расстояние, которое проходит груз без ускорения:
м
Время работы привода без ускорения:
с
Время цикла с учетом ускорения:
с
Рис. 3. Нагрузочная диаграмма двигателя.
По нагрузочной диаграмме находим новое значение эквивалентного момента:
Нм
Мэкв=35,53<Мн;
Мmax£2.5*Мн=2,5*47,748=119,37
Выбранный двигатель удовлетворяет условиям нагрева и допустимой нагрузки.
Для данного случая выбираем трехфазную мостовую схему. Схема приведена на рис.4:
Рис. 4. Мостовая реверсивная схема.
Выбор силового трансформатора производится по расчетным значениям токов I1 и I2, напряжению U2 и типовой мощности Sтр.
Расчетное значение напряжения U2ф вторичной обмотки трансформатора, имеющего m-фазный ТП с нагрузкой на якорь двигателя в зоне непрерывных токов, с учетом необходимого запаса на падение напряжения в силовой части, определяется формулой:
В,
где ku=0,461 – коэффициент, характеризующий отношение напряжений U2ф/Ud0 в реальном выпрямителе;
kc=1,1 – коэффициент запаса по напряжению, учитывающий возможное снижение напряжения сети;
ka=1,1 – коэффициент запаса, учитывающий неполное открытие вентилей при максимальном управляющем сигнале;
kR=1,05 – коэффициент запаса по напряжению, учитывающий падение напряжения в обмотках трансформатора, в вентилях и за счет перекрытия анодов;
Ud=220 В – номинальное напряжение двигателя.
Расчетное значение тока вторичной обмотки:
А,
где kI=0,815 – коэффициент схемы, характеризующий отношение токов I2ф/Id в идеальной схеме;
ki=1,1 – коэффициент, учитывающий отклонение формы анодного тока вентилей от прямоугольной;
Id – значение номинального тока двигателя.
А
Расчетная типовая мощность силового трансформатора:
кВА,
где ks=1,065 – коэффициент схемы, характеризующий отношение мощностей Sтр/UdId для идеального выпрямителя с нагрузкой на противо-ЭДС.
Выбираем силовой
Sн³11,644 кВА; U2фн³128,854 В; I2фн³36,822 А.
Выбираем трансформатор ТС-16.
Его характеристики:
Sн=16 кВА; U1нл=380±5% В; U2нл=230-133 В; Р0=213 Вт; Рк=529 В; Uк=4,6% Y/Y0-D
Коэффициент трансформации:
Расчетное значение тока первичной обмотки:
А.
Среднее значение тока тиристора:
А,
где kзi=2,5 – коэффициент запаса по току;
kох – коэффициент, учитывающий интенсивность охлаждения силового вентиля. При естественном охлаждении kох=0,35;
mтр=3 – число фаз трансформатора.
Максимальная величина обратного напряжения:
В,
где kзн=1,8 – коэффициент запаса по напряжению, учитывающий возможные повышения напряжения питающей сети (включая режим холостого хода) и периодические выбросы Uобр, обусловленные процессом коммутации вентилей;
kUобр=1,065 – коэффициент обратного напряжения, равный соотношению напряжений UBmax/Ud0 для мостовой реверсивной схемы выпрямления;