Исторические аспекты становления понятия «материя», её фундаментальных форм

Автор: Пользователь скрыл имя, 17 Декабря 2011 в 21:35, курсовая работа

Описание работы

Проблема определения сущности материи весьма сложна. Сложность заключается в высокой степени абстрактности самого понятия материи, а также в многообразии различных материальных объектов, форм материи, ее свойств и взаимообусловленностей. В связи с этим перед философией и другими науками стоит множество вопросов: Что такое материя? Как развивались представления о ней? Как соотнести с понятием материи бесконечное множество конкретных предметов, вещей? Какими свойствами она обладает? Вечна ли и бесконечна материя?

Содержание

1. Введение………………………………………………………3
2. Понятие материи……………………………………………………….5
3. Современная наука о строении материи……………………………...7
4. Уровни организации неживой природы……………………………...9
5. Строение материи на биологическом и социальном уровнях……..16
6. Заключение……………………………………………………………20
7. Список литературы…………………………………………………...21

Работа содержит 1 файл

Оля 2.doc

— 105.00 Кб (Скачать)

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ  УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО  ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ  ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» 
 
 
 

Кафедра общей физики 

Курсовая  работа на тему: 

«Исторические аспекты становления понятия «материя», её фундаментальных форм» 
 
 
 
 
 

                                                                       Выполнила:

                 магистрант 1 курса

                                               физико-математического факультета

                               специальности физическое

       образование 

                      Проверил:  
             
             
             

                                       
 
 
 

                                       

                                       Воронеж 2011

Содержание

  1. Введение………………………………………………………3
  1. Понятие материи……………………………………………………….5
  1. Современная наука о строении материи……………………………...7
  1. Уровни  организации неживой природы……………………………...9
  2. Строение материи на биологическом и социальном уровнях……..16
  3. Заключение……………………………………………………………20
  4. Список литературы…………………………………………………...21

  Введение

 

    Проблема определения сущности  материи весьма сложна. Сложность  заключается в высокой степени  абстрактности самого понятия  материи, а также в многообразии различных материальных объектов, форм материи, ее свойств и взаимообусловленностей. В связи с этим перед философией и другими науками стоит множество вопросов: Что такое материя? Как развивались представления о ней? Как соотнести с понятием материи бесконечное множество конкретных предметов, вещей? Какими свойствами она обладает? Вечна ли и бесконечна материя? Что является причиной ее изменения? Какие виды материи известны в настоящее время? Как осуществляется взаимный переход одних видов материи и форм ее движения в другие? На основе каких законов это происходит? Наконец, каким образом возникло такое свойство материи, как сознание?

    Обращая свое внимание на окружающий  нас мир, мы видим совокупность  разнообразных предметов, вещей.  Эти предметы обладают самыми различными свойствами. Одни из них имеют большие размеры, другие - меньшие, одни просты, другие - более сложны, одни постигаемы достаточно полно непосредственно чувственным образом, для проникновения в сущность других необходима абстрагирующая деятельность нашего разума. Отличаются эти предметы и по силе своего воздействия на наши органы чувств.

    Однако при всей своей многочисленности  и разнообразии самые различные предметы окружающего нас мира имеют один общий, если так можно выразиться, знаменатель, позволяющий объединить их понятием материи. Это общее есть независимость всего многообразия предметов от сознания людей. В то же время это общее в бытии различных материальных образований является предпосылкой единства мира. Однако заметить общее в самых различных предметах, явлениях, процессах - задача далеко не простая. Для этого нужна определенная система сложившихся знаний и развитая способность к абстрагирующей деятельности человеческого разума. Поскольку знания есть продукт приобретенный, причем накапливаемый постепенно, в течение длительного времени, то многие суждения людей о природе и обществе первоначально носили весьма неотчетливый, приближенный, а порой и просто неверный характер. В полной мере это относится и к определению категории материи.

  Понятие материи

  В многовековой истории развития материалистического  мировоззрения можно выделить два  основных, хотя и взаимосвязанных, но все-таки достаточно четко различающихся  между собой подхода к определению  понятия материи. Один из них, получивший широкое распространение уже в Новое время, идет по линии определения понятия материи в контексте того, как оно относится к сознанию. Французские материалисты эпохи Просвещения (П. Гольбах, К. А. Гельвеций и др.) выработали понимание материи как всего многообразия предметов, которые, существуя независимо от человека, доступны ему с помощью органов чувств. Как писал П. Гольбах, материя "есть все то, что воздействует каким-нибудь образом на наши чувства".

  Другая  традиция в подходе к определению материи, также получившая развернутое выражение у философов-материалистов эпохи Просвещения (но своими корнями уходящая значительно глубже - в эпоху формирования первых атомистических концепций античности), - это понимание материи именно как субстанции, основы всего существующего в мире. Такое понимание материи как субстанции не противоречит ее пониманию как реальности, доступной человеку через ощущения. Эти два внешне различных подхода к определению понятия материи на самом деле есть как бы два угла зрения на одну и ту же реальность, выделяемые с целью решения определенных мировоззренческих (материя основа всего) и гносеологических (материя постигается через ее проявления) проблем. Чтобы установить, какую методологическую роль способно играть понятие материи в развитии науки, научного познания природы, общества, человека, сознания, культуры, важно определить, каким конкретным содержанием может быть наполнено понимание материи в качестве субстанции. И здесь опять-таки следует выделить две, но теперь уже существенно различающиеся между собой традиции. Одна из них, наиболее древняя, склонна трактовать субстанциальность материи (роль материи как субстанции) в качестве именно исходного "субстрата", "материала", из которого как бы "построены" все другие тела во Вселенной. Классическим выражением такого понимания материи явился атомизм таких античных мыслителей, как Левкипп и Демокрит. С их точки зрения, все тела во Вселенной состоят как бы из "первокирпичиков", никем не создаваемых и неуничтожимых "атомов". Эта идея атомистического строения всех тел во Вселенной была затем воспринята наукой Нового времени и сыграла выдающуюся роль в ее развитии. Другая традиция в понимании субстанциальности материи (ярким представителем которой в эпоху Просвещения был Д. Дидро) ориентирована на понимание ее как бесконечно развивающегося многообразия мира в его единстве. С этой точки зрения материя как субстанция существует не "до" и не "наряду" с другими телами, явлениями, процессами и т.д., а только в самом этом многообразии конкретных явлений и только через них. И если в задачу конкретных наук входит исследование свойств конкретных же объектов мира (от элементарных частиц до метагалактики в целом), то в задачу философии - исследование всеобщих свойств материи, обеспечивающих единство объектов мира и, главное, делающих возможным их качественное многообразие вплоть до появления таких высших форм организации, как жизнь, разум, общество, культура, дух, ценности.

  Современная наука о строении материи.

  В основе современных научных представлений о строении материи лежит идея ее сложной системной организации. Любой объект материального мира может быть рассмотрен в качестве системы, то есть особой целостности, которая характеризуется наличием элементов и связей между ними.

  Например, макротело можно рассматривать  как определенную организацию молекул. Любая молекула тоже является системой, которая состоит из атомов и определенной связи между ними: ядра атомов, входящие в состав молекулы как одноименные (положительные) заряды, подчиняются силам электростатического отталкивания, но вокруг них образуются общие электронные оболочки, которые как бы стягивают эти ядра, не давая им разлететься в пространстве. Атом также представляет собой системное целое - состоит из ядра и электронных оболочек, расположенных на определенных расстояниях от ядра. Ядро каждого атома, в свою очередь, имеет внутреннюю структуру. В простейшем случае - у атома водорода - ядро состоит из одной частицы - протона. Ядра более сложных атомов образованы путем взаимодействия протонов и нейтронов, которые внутри ядра постоянно превращаются друг в друга и образуют особые целостности - нуклоны, частицы, которые часть времени пребывают в протонном, а часть - в нейтронном состоянии. Наконец, и протон, и нейтрон - сложные образования. В них можно выделить специфические элементы - кварки, которые взаимодействуют, обмениваясь другими частицами - глюонами (от лат. gluten - клей), как бы "склеивающими" кварки. Протоны, нейтроны и другие частицы, которые физика объединяет в группу адронов (тяжелых частиц), существуют благодаря кварк-глюонным взаимодействиям.

  Изучая  живую природу, мы также сталкиваемся с системной организацией материи. Сложными системами являются как  клетка, так и построенные из клеток организмы; целостную систему представляет собой вся сфера жизни на Земле - биосфера, существующая благодаря взаимодействию своих частей: микроорганизмов, растительного, животного мира, человека с его преобразующей деятельностью. Биосферу можно рассматривать как целостный объект (как и атом, молекулу и т.д.), где есть определенные элементы и связи между ними.

  Материальные  системы всегда взаимодействуют  с внешним окружением. Некоторые  свойства, отношения и связи элементов  в этом взаимодействии меняются, но основные связи могут сохраняться, и это является условием существования системы как целого. Сохраняющиеся связи выступают как инвариант, то есть устойчивые, не изменяющиеся при вариациях системы. Эти устойчивые связи и отношения между элементами системы образуют ее структуру. Иными словами, система - это элементы и их структура.

  Любой объект материального мира уникален и нетождествен другому. Но при всей уникальности и непохожести объектов определенные их группы в своем строении обладают общими признаками. Например, существует очень большое разнообразие атомов, но все они устроены по одному типу - в атоме должно быть ядро и электронная оболочка. Огромное многообразие молекул - от простейшей молекулы водорода до сложных молекул белков - имеет общие структурные признаки: ядра атомов, образующих молекулу, стянуты общими электронными оболочками. Можно обнаружить общие признаки строения у различных макротел, у клеток, из которых построены живые организмы, и т.д. Наличие общих признаков организации позволяет объединить различные объекты в классы материальных систем. Эти классы часто называют уровнями организации материи или видами материи. 
 
 

  Уровни  организации неживой  природы. 

  Все виды материи связаны между собой  генетически, то есть каждый из них  развивается из другого. Строение материи можно представить как определенную иерархию этих уровней.

  Согласно  современным научным взглядам, глубинные  структуры материального мира представлены объектами элементарного уровня. Это прежде всего элементарные частицы. За исключением электрона, исследования которого начались еще в XIX веке, все остальные были обнаружены в XX столетии. Их свойства оказались весьма необычными, резко отличающимися от свойств макротел, с которыми мы сталкиваемся в повседневном опыте. Все элементарные частицы обладают одновременно и корпускулярными, и волновыми свойствами, а закономерности их движения, изучаемые квантовой физикой, отличаются от закономерностей движения макротел, описанных в классической физике.

  До  открытия элементарных частиц и их взаимодействий наука разграничивала два вида материи - вещество и поле.

  Еще в конце XIX-начале XX века поле определяли как непрерывную материальную среду, а вещество - как прерывное, состоящее  из дискретных частиц. Однако развитие квантовой физики выявило относительность  разграничительных линий между веществом и полем. Только на макроуровне, когда можно не принимать во внимание квантовые свойства полей, их можно считать непрерывными средами. Но на микроуровне поля предстают как состоящие из квантов, которые можно рассматривать в качестве частиц, обладающих одновременно и корпускулярными, и волновыми характеристиками. Например, электромагнитное поле можно представить как систему фотонов, а гравитационное поле - как систему гравитонов - гипотетических частиц, которые предсказывает квантовая теория. В то же время и частицы вещества - электроны и позитроны, мезоны и другие - уже в целом ряде задач физика рассматривает как кванты соответствующих полей.

  Элементарные  частицы участвуют в четырех  типах взаимодействия - сильном, слабом, электромагнитном и гравитационном. Только два последних типа взаимодействий проявляют себя на любых сколь угодно больших расстояниях, и поэтому им подчинены процессы не только микромира, но и макротел, планет, звезд и галактик (макро- и мегамир). Что же касается сильных и слабых взаимодействий, то они характерны только для процессов микромира. Одним из самых удивительных открытий последней трети XX века было обнаружение того, что электромагнитные и слабые взаимодействия представляют собой стороны, различные проявления единой сущности - электрослабого взаимодействия.

  Элементарные  частицы можно классифицировать по типам взаимодействия. Адроны (тяжелые  частицы - протоны, нейтроны, мезоны и  др.) участвуют во всех взаимодействиях. Лептоны (от греч. leptos - легкий; например, электрон, нейтрино и др.) не участвуют в сильных взаимодействиях, а только в электрослабых и гравитационных. Гипотетические гравитоны выступают носителями только гравитационных сил. В сильных взаимодействиях многие адроны неразличимы, они как бы на одно лицо. Например, неотличимы друг от друга нуклоны - нейтроны и протоны, все П-мезоны (Пи-мезоны) выступают как одна частица. Но когда включаются электромагнитные силы, то нуклоны расщепляются на две составляющие, а П-мезоны на три (П°, П+, П-). Подобное расщепление позволяет рассматривать частицы как проявления некоторой глубинной структуры. Поиск таких структур составляет главную цель современной физики. На этом пути наука стремится обнаружить те глубинные свойства и состояния материи, которые в конечном счете определяют эволюцию Вселенной, особенности взаимодействия и развития ее объектов.

  Первым  большим успехом на этом пути было открытие кварковой структуры адронов. Кварки оказались весьма экзотическими  объектами не только потому, что  у них дробный электрический заряд. Само взаимодействие кварков, осуществляемое благодаря обмену глюонами, таково, что увеличение расстояния между кварками внутри адронов приводит к резкому возрастанию связывающих их сил. Поэтому в отличие от ранее известных элементарных частиц кварки пока не обнаружены в свободном состоянии. Они оказываются как бы запертыми внутри адронов. Но в эксперименте их можно прозондировать: при столкновении частиц больших энергий внутри адронов обнаруживается несколько своеобразных центров, на которых происходит рассеяние частиц и которые физика отождествляет с кварками.

  Кварки  и лептоны выступают в качестве базисных объектов в системе элементарных частиц. Они являются главным строительным материалом для вещества нашего мира, поскольку ядра атомов существуют благодаря взаимодействию кварков, а формирование электронных оболочек вокруг ядра приводит к образованию атомов.

Информация о работе Исторические аспекты становления понятия «материя», её фундаментальных форм