Автор: Пользователь скрыл имя, 12 Апреля 2011 в 15:46, реферат
Понятие вакуум в истории философии и науки обычно употреблялось для обозначения пустоты, "пустого" пространства, т.е. "чистой" протяженности, абсолютно противопоставляемой телесным, вещественным образованиям.
Введение ………………………………………………………………..…...3
Феномен физического вакуума …………………………………………....6
Физический вакуум как исходный пункт теории строения Вселенной ...7
Свойства физического вакуума ……………………………………………14
Новое понимание сущности физического вакуума…………………….....18
Заключение ……………………………………………………………….....21
Список использованной литературы ……………………………………...22
Содержание
Введение
………………………………………………………………..…...
Феномен физического вакуума …………………………………………....6
Физический вакуум как исходный пункт теории строения Вселенной ...7
Свойства физического вакуума ……………………………………………14
Новое понимание сущности физического вакуума…………………….....18
Заключение
……………………………………………………………….....
Список использованной литературы ……………………………………...22
Введение
«В
вакууме, заключенном
в объеме обыкновенной
электрической лампочки,
энергии такое большое
количество, что ее хватило
бы, чтобы вскипятить
все океаны на Земле.»
Р.Фейнман, Дж.Уилер
Понятие вакуум в истории философии и науки обычно употреблялось для обозначения пустоты, "пустого" пространства, т.е. "чистой" протяженности, абсолютно противопоставляемой телесным, вещественным образованиям. Последние рассматривались как чистые вкрапления в вакуум. Такой взгляд на природу вакуума был свойственен древнегреческой науке, основоположниками которой являлись Левкипп, Демокрит, Аристотель. Атомы и пустота - две объективные реальности, фигурировавшие в атомистике Демокрита. Пустота так же объективна, как и атомы. Только наличие пустоты делает возможным движение. Эта концепция вакуума получила развитие в работах Эпикура, Лукреция, Бруно, Галилея и др. Наиболее развернутую аргументацию в пользу вакуума дал Локк.
Концепция вакуума была наиболее полно раскрыта с естественнонаучной стороны в учении Ньютона об "абсолютном пространстве", понимаемом как пустое вместилище для материальных объектов. Но уже в 17 веке все громче раздаются голоса философов и физиков, отрицающих существование вакуума, так как неразрешимым оказался вопрос о природе взаимодействия между атомами. По Демокриту, атомы взаимодействуют друг с другом только путем непосредственного механического контакта. Но это вело к внутренней противоречивости теории, так как устойчивый характер тел мог быть объяснен только непрерывностью материи, т.е. отрицанием существования пустоты, исходного пункта теории. Попытка Галилея обойти это противоречие, рассматривая малые пустоты внутри тел как связующие силы, не могла привести к успеху в рамках узкомеханистической трактовки взаимодействия. С развитием науки, в дальнейшем эти рамки были сломаны, - был предложен тезис о том, что взаимодействие может передаваться не только механическим путем, но и электрическими, магнитными и гравитационными силами. Однако это не решило проблемы вакуума. Боролись две концепции взаимодействия: "дальнодействия" и "близкодействия". Первая основывалась на возможности бесконечно большой скорости распространения сил через пустоту. Вторая требовала наличия некоторой промежуточной, непрерывной среды. Первая признавала вакуум, вторая его отрицала. Первая метафизически противопоставляла вещество и "пустое" пространство, вносила в науку элементы мистики и иррационализма, вторая же исходила из того, что материя не может действовать там, где ее нет. Опровергая существование вакуума, Декарт писал: "...что касается пустого пространства в том смысле, в каком философы понимают это слово, то есть такого пространства, где нет никакой субстанции, то очевидно, что в мире нет пространства, которое было бы таковым, потому что протяжение пространства как внутреннего места не отличается от протяжения тела".
Отрицание вакуума в работах Декарта и Гюйгенса послужило отправной точкой для создания физической гипотезы эфира, продержавшейся в науке до начала 20-го века. Развитие в конце 19-го века теории о поле и появление в начале 20-го века теории относительности окончательно "похоронило" теорию "дальнодействия". Была разрушена и теория эфира, так как было отвергнуто существование абсолютной системы отсчета. Но крушение гипотезы существования эфира не означало возврата к прежним представлениям о наличии пустого пространства: сохранились и получили дальнейшее развитие представления о физических полях. Проблема, поставленная еще в античные времена, решена практически современной наукой. Вакуумной пустоты не существует. Наличие "чистой" протяженности, "пустого" пространства противоречит основным положениям естествознания. Пространство не есть особая сущность, обладающая бытием наряду с материей. Как материя не может быть лишена своих пространственных свойств, так и пространство не может быть "пустым", оторванным от материи. Этот вывод находит свое подтверждение и в квантовой теории поля.
Открытие У.Лэмбом сдвига
Феномен физического вакуума
Особое место среди всех объектов человеческого познания на протяжении многовековой истории цивилизации всегда занимал специфический объект под названием «пустота – эфир – физический вакуум», являющийся самым глубоким уровнем материи. В квантовой теории поля под физическим вакуумом понимают основное состояние квантованных полей, обладающих наименьшей энергией. К ним относятся поля фотонов, электронов, позитронов, нуклонов, антинуклонов, глюонов, кварков, хиггсовских частиц и т.д. Часто физический вакуум определяют как состояние, в котором отсутствуют реальные частицы, то есть состояние, действие на которое операторов уничтожения дает нулевой результат (математический вакуум). Для физического вакуума вакуумное среднее от двух операторов полей в одной точке пространствавремени («вакуумный конденсат») может быть не равным нулю.
В электродинамике Максвелла – Дирака физический вакуум представляет собой «кипящий бульон» из виртуальных частиц и античастиц – электронов и позитронов, время жизни которых определяется, согласно принципу неопределенности Гейзенберга, формулой:
,
где h – постоянная Планка, а ΔE – неопределенность в энергетических уровнях частиц.
Поскольку
не существует запретов на длительность
их существования, то можно сказать,
что виртуальное существование
физического вакуума
Физический вакуум как исходный пункт теории
строения Вселенной
Новейшее развитие физики элементарных частиц привело к возникновению и становлению ряда новых концепций. Важнейшими из них являются следующие, тесно связанные концепции:
--
идея геометрической
-- представление об особых состояниях физического вакуума - поляризованных вакуумных конденсатов.
Геометрическая интерпретация
В последнее время основные надежды на построение единой теории всех взаимодействий стали возлагаться на теорию суперструн. В этой теории точечные частицы заменяются суперструнами в многомерном пространстве. С помощью струн стараются охарактеризовать концентрацию поля в некоторой тонкой одномерной области - струне, что не достижимо для других теорий. Характерная особенность струны - наличие многих степеней свободы, чего нет у такого теоретического объекта, как материальная точка. Суперструна, в отличие от струны - объект, дополненный по идее Калуци-Клейна определенным числом степеней свободы, большим четырех. В настоящее время в теориях Суперобъединения рассматриваются суперструны с десятью и более степенями свободы, шесть из которых должны компактифицироваться во внутренние симметрии.
Из всего вышесказанного можно
заключить, что единая теория,
по всей видимости, может быть
построена на фундаменте
В рамках современной физики, физический вакуум - основное, т.е. энергетически низшее, квантовое состояние поля, в котором отсутствуют свободные частицы. При этом отсутствие свободных частиц не означает отсутствия так называемых виртуальных частиц (процессы рождения которых в нем постоянно происходят) и полей (это противоречило бы принципу неопределенности). В современной физике сильных взаимодействий основным объектом теоретических и экспериментальных исследований являются вакуумные конденсаты - области уже перестроенного вакуума с ненулевой энергией. В квантовой хромодинамике это кварк-глюонные конденсаты, которые являются носителями около половины энергии адронов. В адронах состояние вакуумных конденсатов стабилизируется хромодинамическими полями валентных кварков, несущих квантовые числа адронов. Кроме того, существует еще и самополяризованный вакуумный конденсат. Он представляет собой область пространства, в котором отсутствуют кванты фундаментальных полей, но их энергия (полей) не равна нулю. Самополяризованный вакуум - пример того, как расслоенное пространство-время является носителем энергии. Область пространства-времени с самополяризованным вакуумным глюонным конденсатом в эксперименте должна проявляться как мезон с нулевыми квантовыми числами (глюоний). Такая интерпретация мезонов для физики имеет принципиальное значение, так как в этом случае мы имеем дело с частицей чисто "геометрического" происхождения. Глюоний может распадаться на другие частицы - кварки и лептоны, т.е. мы имеем дело с процессом взаимопревращения вакуумных конденсатов в кванты поля или, иначе говоря, с перекачкой энергии из вакуумного конденсата в вещество.
Из этого обзора видно, что
современные достижения и идеи
физики могут привести к
Вопрос о вакууме встает в
рамках вычлененного целого - суперполя.
Исходный вид нашей Вселенной,
как считают физики, вакуумный.
И при описании истории