Вакуум: поняти и сущность

Автор: Пользователь скрыл имя, 12 Апреля 2011 в 15:46, реферат

Описание работы

Понятие вакуум в истории философии и науки обычно употреблялось для обозначения пустоты, "пустого" пространства, т.е. "чистой" протяженности, абсолютно противопоставляемой телесным, вещественным образованиям.

Содержание

Введение ………………………………………………………………..…...3
Феномен физического вакуума …………………………………………....6
Физический вакуум как исходный пункт теории строения Вселенной ...7
Свойства физического вакуума ……………………………………………14
Новое понимание сущности физического вакуума…………………….....18
Заключение ……………………………………………………………….....21
Список использованной литературы ……………………………………...22

Работа содержит 1 файл

КСЕ выкуум.doc

— 103.00 Кб (Скачать)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Содержание

Введение  ………………………………………………………………..…...3

Феномен физического вакуума …………………………………………....6

Физический  вакуум как исходный пункт теории строения Вселенной ...7

Свойства  физического вакуума ……………………………………………14

Новое понимание сущности физического вакуума…………………….....18

Заключение  ……………………………………………………………….....21

Список  использованной литературы ……………………………………...22

 

Введение

     «В  вакууме, заключенном  в объеме обыкновенной  
электрической лампочки, энергии такое большое  
количество, что ее хватило бы, чтобы вскипятить  
все океаны на Земле.» 
Р.Фейнман, Дж.Уилер
 

     Понятие вакуум в истории философии и  науки обычно употреблялось для  обозначения пустоты, "пустого" пространства, т.е. "чистой" протяженности, абсолютно противопоставляемой телесным, вещественным образованиям. Последние рассматривались как чистые вкрапления в вакуум. Такой взгляд на природу вакуума был свойственен древнегреческой науке, основоположниками которой являлись Левкипп, Демокрит, Аристотель. Атомы и пустота - две объективные реальности, фигурировавшие в атомистике Демокрита. Пустота так же объективна, как и атомы. Только наличие пустоты делает возможным движение. Эта концепция вакуума получила развитие в работах Эпикура, Лукреция, Бруно, Галилея и др. Наиболее развернутую аргументацию в пользу вакуума дал Локк.   

      

     Концепция вакуума была наиболее полно раскрыта с естественнонаучной стороны в  учении Ньютона об "абсолютном пространстве", понимаемом как пустое вместилище для  материальных объектов. Но уже в 17 веке все громче раздаются голоса философов и физиков, отрицающих существование вакуума, так как неразрешимым оказался вопрос о природе взаимодействия между атомами. По Демокриту, атомы взаимодействуют друг с другом только путем непосредственного механического контакта. Но это вело к внутренней противоречивости теории, так как устойчивый характер тел мог быть объяснен только непрерывностью материи, т.е. отрицанием существования пустоты, исходного пункта теории. Попытка Галилея обойти это противоречие, рассматривая малые пустоты внутри тел как связующие силы, не могла привести к успеху в рамках узкомеханистической трактовки взаимодействия. С развитием науки, в дальнейшем эти рамки были сломаны, - был предложен тезис о том, что взаимодействие может передаваться не только механическим путем, но и электрическими, магнитными и гравитационными силами. Однако это не решило проблемы вакуума. Боролись две концепции взаимодействия: "дальнодействия" и "близкодействия". Первая основывалась на возможности бесконечно большой скорости распространения сил через пустоту. Вторая требовала наличия некоторой промежуточной, непрерывной среды. Первая признавала вакуум, вторая его отрицала. Первая метафизически противопоставляла вещество и "пустое" пространство, вносила в науку элементы мистики и иррационализма, вторая же исходила из того, что материя не может действовать там, где ее нет. Опровергая существование вакуума, Декарт писал: "...что касается пустого пространства в том смысле, в каком философы понимают это слово, то есть такого пространства, где нет никакой субстанции, то очевидно, что в мире нет пространства, которое было бы таковым, потому что протяжение пространства как внутреннего места не отличается от протяжения тела".   

       Отрицание вакуума в работах  Декарта и Гюйгенса послужило отправной точкой для создания физической гипотезы эфира, продержавшейся в науке до начала 20-го века. Развитие в конце 19-го века теории о поле и появление в начале 20-го века теории относительности окончательно "похоронило" теорию "дальнодействия". Была разрушена и теория эфира, так как было отвергнуто существование абсолютной системы отсчета. Но крушение гипотезы существования эфира не означало возврата к прежним представлениям о наличии пустого пространства: сохранились и получили дальнейшее развитие представления о физических полях. Проблема, поставленная еще в античные времена, решена практически современной наукой. Вакуумной пустоты не существует. Наличие "чистой" протяженности, "пустого" пространства противоречит основным положениям естествознания. Пространство не есть особая сущность, обладающая бытием наряду с материей. Как материя не может быть лишена своих пространственных свойств, так и пространство не может быть "пустым", оторванным от материи. Этот вывод находит свое подтверждение и в квантовой теории поля.   

       Открытие У.Лэмбом сдвига уровней  атомных электронов и дальнейшие  работы в этом направлении  привели к пониманию природы  вакуума как особого состояния  поля. Это состояние характеризуется  наименьшей энергией поля, наличием  нулевых колебаний поля. Нулевые колебания поля проявляются в виде экспериментально обнаруженных эффектов. Следовательно, вакуум в квантовой электродинамике обладает рядом физических свойств и не может рассматриваться как метафизическая пустота. Более того, свойства вакуума определяют свойства окружающей нас материи, а сам по себе физический вакуум является исходной абстракцией для физики.

 

Феномен физического вакуума

     Особое  место среди всех объектов человеческого  познания на протяжении многовековой истории цивилизации всегда занимал специфический объект под названием «пустота – эфир – физический вакуум», являющийся самым глубоким уровнем материи. В квантовой теории поля под физическим вакуумом понимают основное состояние квантованных полей, обладающих наименьшей энергией. К ним относятся поля фотонов, электронов, позитронов, нуклонов, антинуклонов, глюонов, кварков, хиггсовских частиц и т.д. Часто физический вакуум определяют как состояние, в котором отсутствуют реальные частицы, то есть состояние, действие на которое операторов уничтожения дает нулевой результат (математический вакуум). Для физического вакуума вакуумное среднее от двух операторов полей в одной точке пространствавремени («вакуумный конденсат») может быть не равным нулю.

     В электродинамике Максвелла –  Дирака физический вакуум представляет собой «кипящий бульон» из виртуальных частиц и античастиц – электронов и позитронов, время жизни которых определяется, согласно принципу неопределенности Гейзенберга, формулой:

      ,

     где h – постоянная Планка, а ΔE – неопределенность в энергетических уровнях частиц.

     Поскольку не существует запретов на длительность их существования, то можно сказать, что виртуальное существование  физического вакуума характеризуется  «флуктуацией» бытия и соответствующими ей максимализацией функции физической потенции и минимализацией пространственновременных условий обнаружения частиц. По этой причине физический вакуум ненаблюдаем при помощи макроприборов на вещественном уровне, однако современная картина мира допускает объективное существование таких сущностей, возводя в ранг физической реальности бытия виртуальное существование физического вакуума, которое проявляет и обнаруживает себя через категорию бесконечного и косвенные эмпирические данные (в отличие от актуально наблюдаемого бытия), например, в эффектах Лэмба, Казимира, Хокинга, Унру и т.д. Физический вакуум также играет существенную роль не только в микрофизике, но и в вопросах астрофизики и космологии.  

Физический  вакуум как исходный пункт теории

     строения  Вселенной  

       Новейшее развитие физики элементарных частиц привело к возникновению и становлению ряда новых концепций. Важнейшими из них являются следующие, тесно связанные концепции:   

     -- идея геометрической интерпретации  взаимодействий и квантов физических  полей;   

     -- представление об особых состояниях физического вакуума - поляризованных вакуумных конденсатов.   

       Геометрическая интерпретация частиц  и взаимодействий реализована  в так называемых калибровочных  и суперкалибровочных теориях.  В 1972 г. Ф. Клейном была выдвинута  "Эрлангенская программа", в которой выражалась идея систематического применения групп симметрий к изучению геометрических объектов. С открытием теории относительности теоретико-групповой подход проникает и в физику. Известно, что в общей теории относительности гравитационное поле рассматривается как проявление искривления четырехмерного пространства-времени, изменения его геометрии вследствие действия всевозможных видов материи. Благодаря работам Г. Вейля, В. Фока, Ф. Лондона впоследствии удалось описать электромагнетизм в терминах калибровочной инвариантности с абелевой группой. В дальнейшем были созданы и неабелевы калибровочные поля, описывающие преобразования симметрии, связанной с вращением в изотопическом пространстве. Далее в 1979 году была создана единая теория электромагнитных и слабых взаимодействий. А сейчас активно разрабатываются теории Великого объединения, объединяющие сильное и слабое электрическое взаимодействие, а также теории Суперобъединения, включающей единую систему сильного и электрослабого, а также гравитационного поля.

     В последнее время основные надежды  на построение единой теории всех взаимодействий стали возлагаться на теорию суперструн. В этой теории точечные частицы заменяются суперструнами в многомерном  пространстве. С помощью струн  стараются охарактеризовать концентрацию поля в некоторой тонкой одномерной области - струне, что не достижимо для других теорий. Характерная особенность струны - наличие многих степеней свободы, чего нет у такого теоретического объекта, как материальная точка. Суперструна, в отличие от струны - объект, дополненный по идее Калуци-Клейна определенным числом степеней свободы, большим четырех. В настоящее время в теориях Суперобъединения рассматриваются суперструны с десятью и более степенями свободы, шесть из которых должны компактифицироваться во внутренние симметрии.   

       Из всего вышесказанного можно  заключить, что единая теория, по всей видимости, может быть  построена на фундаменте геометризации  физики. Это по-новому ставит философскую  проблему об отношении материи  и пространства-времени, потому что на первый взгляд геометризация физики приводит к отделению понятия пространства-времени от материи. Поэтому представляется важным выявление роли физического вакуума как материального объекта в формировании геометрии известного нам физического мира.   

       В рамках современной физики, физический вакуум - основное, т.е.  энергетически низшее, квантовое  состояние поля, в котором отсутствуют  свободные частицы. При этом  отсутствие свободных частиц  не означает отсутствия так  называемых виртуальных частиц (процессы рождения которых в нем постоянно происходят) и полей (это противоречило бы принципу неопределенности). В современной физике сильных взаимодействий основным объектом теоретических и экспериментальных исследований являются вакуумные конденсаты - области уже перестроенного вакуума с ненулевой энергией. В квантовой хромодинамике это кварк-глюонные конденсаты, которые являются носителями около половины энергии адронов. В адронах состояние вакуумных конденсатов стабилизируется хромодинамическими полями валентных кварков, несущих квантовые числа адронов. Кроме того, существует еще и самополяризованный вакуумный конденсат. Он представляет собой область пространства, в котором отсутствуют кванты фундаментальных полей, но их энергия (полей) не равна нулю. Самополяризованный вакуум - пример того, как расслоенное пространство-время является носителем энергии. Область пространства-времени с самополяризованным вакуумным глюонным конденсатом в эксперименте должна проявляться как мезон с нулевыми квантовыми числами (глюоний). Такая интерпретация мезонов для физики имеет принципиальное значение, так как в этом случае мы имеем дело с частицей чисто "геометрического" происхождения. Глюоний может распадаться на другие частицы - кварки и лептоны, т.е. мы имеем дело с процессом взаимопревращения вакуумных конденсатов в кванты поля или, иначе говоря, с перекачкой энергии из вакуумного конденсата в вещество.   

       Из этого обзора видно, что  современные достижения и идеи  физики могут привести к неверной  философской трактовке соотношения материи и пространства-времени. Мнение, что геометризация физики сводится к геометрии пространства-времени, является ошибочным. В теории Суперобъединения делается попытка всю материю представить в виде конкретного объекта - единого самодействующего суперполя. Сами по себе геометризованные теории в естествознании являются лишь формами описания реальных процессов. Для того чтобы из формальной геометризованной теории суперполя получить теорию реальных процессов, его необходимо проквантовать. Процедура квантования предполагает необходимость макрообстановки. Роль такой макрообстановки берет на себя пространство-время с классической неквантовой геометрией. Чтобы получить его пространство-время, надо вычленить макроскопическую составляющую суперполя, т.е. составляющую, которую с большой точностью можно было бы считать классической. Но разделение суперполя на классическую и квантовую составляющие является операцией приближенной и имеет смысл не всегда. Таким образом, существует граница, за которой стандартные определения пространства-времени и материи теряют смысл. Пространство-время и материя за ней сводятся в общую категорию суперполя, не имеющей операционного определения (пока). Пока нам неизвестно, по каким законам эволюционирует суперполе, потому что у нас нет классических объектов типа пространства-времени, с помощью которых мы могли бы описать проявления суперполя, а другим аппаратом мы пока не обладаем. По всей видимости, многомерное суперполе есть элемент еще более общей целостности, и является результатом компактификации бесконечномерного многообразия. Суперполе, таким образом, может быть лишь элементом другой целостности. Дальнейшая эволюция суперполя как целого приводит к возникновению различных видов материи, различных форм ее движения, существующих в четырехмерном пространстве-времени.   

       Вопрос о вакууме встает в  рамках вычлененного целого - суперполя.  Исходный вид нашей Вселенной,  как считают физики, вакуумный.  И при описании истории эволюции  нашей Вселенной рассматривается конкретный физический вакуум. Способ существования этого конкретного физического вакуума есть конкретное четырехмерное пространство-время, организующее его. В таком смысле вакуум может быть выражен через категорию содержания, а пространство-время - через категорию формы как внутренней организации вакуума. В этом контексте рассмотрение по отдельности исходного вида материи - вакуума и пространства-времени нашей Вселенной является ошибкой, так как является отрывом формы от содержания. Таким образом, мы подходим к вопросу об исходной абстракции в построении теории физического мира. Ниже приведены основные признаки, которые предъявляются к исходной абстракции. Исходная абстракция должна:   

Информация о работе Вакуум: поняти и сущность