Структурные уровни организации материи:микромир,макромир,мегамир

Автор: Пользователь скрыл имя, 24 Января 2012 в 08:01, контрольная работа

Описание работы

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями.
Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».

Содержание

ПЛАН
1. Введение………………………………………………………………… 3
2. Системный подход к строению материи…………………………….... 4
3. Взаимосвязь микро-, макро- и мегамиров…………………………….. 5
4. Представление о классической физике, о поле и веществе, как видах материи………………………..…………………………………….. 7
5. Корпускулярно-волновой дуализм……………………………..….….. 8
6. Структура атома с точки зрения современной физики………………. 9
7. Элементарные частицы и их свойства………………………………… 12
8. Модели Вселенной, разработанные в современной космологии……. 14
9. Основные этапы эволюции Вселенной с точки зрения современной науки………………………………………………….……... 16
10. Заключение………………………………………………………….….. 18
11. Список использованной литературы………………………………….. 20

Работа содержит 1 файл

1 сем. КОНТРОЛЬНАЯ Астрономия(КСЕ).doc

— 131.00 Кб (Скачать)

      Дуализм электронов, которые мы привыкли считать  частицами, проявляется в том, что  при отражении от поверхности  монокристалла наблюдается дифракционная  картина, что является проявлением  волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/1 (р – импульс электрона, а h – его длина волны де Бройля).

      Корпускулярно-волновой дуализм лежит в основе квантовой  физики. 

6. СТРУКТУРА АТОМА

С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ  ФИЗИКИ

      Гипотеза об атомах как неделимых частицах вещества была возрождена в естествознании и прежде всего в физике и химии для объяснения таких эмпирических законов, как законы Бойля — Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и различных химических законов. В самом деле, закон Бойля — Мариотта утверждает, что объем газа обратно пропорционален его давлению, но не объясняет почему. Аналогично этому при нагревании тела его размеры увеличиваются, но эмпирический закон теплового расширения не объясняет причину такого расширения.

      Очевидно, что для такого объяснения необходимо выйти за рамки наблюдаемых зависимостей, которые выражаются в эмпирических законах, и обратиться к теоретическим  гипотезам и законам. В отличие  от эмпирических законов они содержат понятия и величины, относящиеся к ненаблюдаемым объектам. Именно такими объектами являются атомы, а также образованные из них молекулы. С помощью атомов и молекул в кинетической теории вещества убедительно объясняются все перечисленные и другие известные эмпирические законы. В химии атом обычно определяют как наименьшую часть или единицу химического элемента.

      Однако  попытка сведения всех многообразных  и сложных свойств и закономерностей тел и явлений окружающего мира к более простым вряд ли могла считаться успешной, хотя бы потому, что на каждом уровне познания раскрывались новые границы и находились новые неделимые последние частицы материи. Вплоть до конца прошлого века такой частицей считался атом, но крупнейшие открытия в физике привели к отказу от такой точки зрения. Среди этих открытий следует отметить, во-первых, обнаружение явлений естественной радиоактивности таких химических элементов, как радий и уран. Оказалось, что эти элементы в естественных условиях испускают специфические радиоактивные лучи и в результате превращаются в другие химические элементы, а в конечном итоге – свинец. Отсюда непосредственно следовало, что атомы вовсе не являются неизменными, неделимыми и последними кирпичиками мироздания. Вскоре после радиоактивности была открыта мельчайшая частица электричества — электрон. В 1913 г. Э. Резерфорд, исследуя рассеяние α-частиц атомами тяжелых элементов, показал, что основная часть массы атома сосредоточена в его центральной части — ядре, так как вдали от него α -частицы проходят беспрепятственно. Основываясь на этих экспериментах, он предложил планетарную модель атома, согласно которой вокруг массивного ядра вращаются по своим орбитам отрицательно заряженные электроны.

Впоследствии  эта модель была значительно модифицирована. Оказалось, что электроны не могут вращаться по любым орбитам, а только по стационарным, ибо в противном случае они бы непрерывно излучали энергию и упали бы на ядро, и атом самопроизвольно разрушился. Ничего подобного, однако, не наблюдается, так как атомы являются весьма устойчивыми образованиями. Все эти и связанные с ними революционные открытия невозможно было понять и объяснить с точки зрения старой, классической физики.

      После того, когда физики установили, что  атом не является последним кирпичиком мироздания и сам он построен из более простых, элементарных частиц, идея поиска таких частиц заняла главное место в их исследованиях. По-прежнему мысль физиков была устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных, фундаментальных частиц, которые впоследствии были названы элементарными. Наиболее известными элементарными частицами являются электрон, фотон, пи-мезоны, мюоны, тяжелые лептоны и нейтрино. Позже были открыты частицы с весьма экзотическими названиями: странные частицы, мезоны со скрытым "очарованием ", "очарованные " частицы, ипсилион -частицы, разнообразные резонансные частицы и многие другие. Общее их число превышает 350. Поэтому вряд ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков, из которых, по предположению, построены все известные элементарные частицы.

      Одна  из характерных особенностей элементарных частиц состоит в том, что они  имеют крайне незначительные массы и размеры. Масса большинства из них — порядка массы протона, т. е. 1,6 х 10–24г, а размеры порядка 10–16см. Другое их свойство заключается в способности рождаться и уничтожаться, т. е. испускаться и поглощаться при взаимодействии с другими частицами. Например, превращения пары электрон и позитрон в два фотона: е + е+ –> 2γ

       Подобные же взаимопревращения происходят и с другими элементарными  частицами.  
 
 

        
 
 
 

7. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ  И ИХ СВОЙСТВА

      В соответствии с достижениями квантовой  физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности.

      Развитие  физики микромира показало неисчерпаемость  свойств элементарных частиц и их взаимодействий. Все частицы, имеющие достаточно большую энергию, способны к взаимопревращениям, но при соблюдении ряда законов сохранения. Число известных элементарных частиц постоянно растет и превышает уже 300 разновидностей, включая неустойчивые резонансные состояния. Важнейшим свойством частицы является ее масса покоя. По этому свойству частицы делятся на 4 группы:

      1. Легкие частицы – лептоны (фотон, электрон, позитрон). Фотоны не имеют массы покоя.

      2. Частицы средней массы – мезоны (мю-мезон, пи-мезон).

      3. Тяжелые частицы – барионы. К ним относятся нуклоны – составные части ядра: протоны и нейтроны. Протон – самый легкий барион.

      4. Сверхтяжелые – гипероны. Устойчивых разновидностей немного:  фотоны (кванты электромагнитного излучения); гравитоны (гипотетические кванты гравитационного поля); электроны; позитроны (античастицы электронов); протоны и антипротоны; нейтроны; нейтрино – самая загадочная из всех элементарных частиц.

      Нейтрино  играет большую роль в космических  процессах во всей эволюции материи  во Вселенной. Время их жизни практически бесконечно. По подсчетам ученых, нейтрино уносят значительную долю излучаемой звездами энергии. Наше Солнце теряет за счет излучения нейтрино примерно 7% энергии, на каждый квадратный сантиметр Земли перпендикулярно солнечным лучам ежесекундно падает примерно 300 миллионов нейтрино. Дальнейшая судьба этого излучения неизвестна, но, очевидно, нейтрино должно вновь включиться в круговорот материи в природе.

      Особенностью  элементарных частиц является то, что большинство из них могут возникать при столкновении с другими частицами достаточно высокой энергии: протон большой энергии превращается в нейтрон с испусканием пи-мезона. При этом элементарные частицы распадаются на другие: нейтрон - на электрон, протон и антинейтрино, а нейтральный пи-мезон - на два фотона. Пи-мезоны, таким образом, являются квантами ядерного поля, объединяющими нуклоны и ядра.

      В ходе развития науки открываются  все новые свойства элементарных частиц. Взаимная обусловленность свойств частиц свидетельствует о сложной их природе, наличии многогранных связей и отношений.

      У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрических зарядов  и магнитных моментов: антипротоны, антинейтроны и т.д. Из античастиц могут  быть образованы устойчивые атомные  ядра и антивещество, подчиняющееся тем же законам движения, что и обычное вещество. В больших количествах антивещество в космосе не обнаружено, поэтому существование «антимира», т.е. галактик из антивещества является проблематичным.

      Таким образом, с каждым новым открытием строение микромира уточняется и оказывается все более сложным. Чем глубже мы уходим в него, тем больше новых свойств обнаруживает наука. 

8. МОДЕЛИ ВСЕЛЕННОЙ,

РАЗРАБОТАННЫЕ В СОВРЕМЕННОЙ  КОСМОЛОГИИ

     Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены  средней плотностью  материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного  уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем  и  обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном  в 1917 г. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.

     Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

     В том же 1917 г. голландский астроном В. де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае "пустой" Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга и растворить всю систему. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

     В 1922 г. российский математик и геофизик Л.А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы.

     Решение уравнений А.А. Фридмана, допускает  три возможности.:

  1. если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния;
  2. если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется;
  3. если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния.

      По  современным данным, средняя плотность  материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.

     Расширение  Вселенной считается научно установленным  фактом. Первым к поискам данных о движении спиральных галактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

     В 1929 г. американский астроном  Э.П.Хаббл  обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает  пропорционально  расстоянию,– система галактик расширяется.

     Но  то, что в настоящее время Вселенная  расширяется, еще не позволяет однозначно решить вопрос в пользу той или иной модели. 

9. ОСНОВНЫЕ ЭТАПЫ  ЭВОЛЮЦИИ ВСЕЛЕННОЙ

С ТОЧКИ ЗРЕНИЯ СОВРЕМЕННОЙ  НАУКИ

     В качестве одного из наиболее вероятных  сценариев эволюции Вселенной, в  рамках которого удается решить большинство космологических проблем, современная космология рассматривает сценарий, включающий инфляционную стадию. Инфляция в переводе с латинского – вздутие. Инфляционная стадия предполагает процесс вздутия Вселенной. Основная идея инфляционной теории состоит в том, что и расширение Вселенной и весь последующий ход эволюционного развития рассматриваются из состояния, когда вся материя была представлена только физическим вакуумом. Однако в физическом смысле вакуум не есть пустота, в нем постоянно происходят процессы рождения и уничтожения всевозможных частиц, квантов, полей.

     Модель  Большого взрыва. Считается, что после того как 15 млрд. лет назад произошел Большой взрыв, началось постепенное охлаждение и расширение Вселенной. Причины Большого взрыва и перехода к расширению во всех моделях Вселенной считаются неясными и выходящими за рамки компетенции любой физической современной теории. Но если взрыв был, то дальше картина выглядит следующим образом:

Информация о работе Структурные уровни организации материи:микромир,макромир,мегамир