Автор: Пользователь скрыл имя, 14 Ноября 2011 в 17:29, контрольная работа
Цель данной работы – проанализировать великие перевороты в науке.
Введение 3
1. Основные этапы развития естествознания 4
2. Великие перевороты в науке 12
Заключение 19
Список использованной литературы 20
Однако решающий вклад в становление механики внес И. Ньютон.
Согласно законам механики И. Ньютона гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Законы тяготения определяют отношение материи к пространству и всех материальных тел друг к другу. Тяготение создает в этом смысле реальное единство Вселенной.
Объяснение характера движения небесных тел и даже предсказание новых планет Солнечной системы было триумфом ньютоновской теории тяготения, поэтому долгое время в науке доминировала механистическая картина мира.
Развитие биологии в XVIII веке также не обходилось без революционных открытий. Так, Г. Мендель (1822-1884) открыл законы наследственности, а Л. Пастер, исследуя бактерии, показал, что они присутствуют в атмосфере, распространяются капельным путем и их можно разрушить высокой температурой6.
Итогом
развития эволюционной концепции стала
работа Ч. Дарвина (1809-1882) «Происхождение
видов путем естественного
Во второй половине XIX в. на основе исследований М. Фарадея и Д. Максвелла возникла электромагнитная картина мира.
М. Фарадей исходил из основной идеи о взаимной связи явлений природы. Он считал, что если ток способен вызывать магнитные явления, то и обратно, при помощи магнитов или других токов, можно получить электрические токи. В результате настойчивости и многих попыток Фарадей действительно открыл в 1831 г. это явление, которое еще более укрепило представление о связи между электричеством и магнетизмом.
Второй важнейшей идеей в работах Фарадея было признание основной, определяющей роли промежуточной среды в электрических явлениях. Фарадей не допускал действия на расстоянии и считал, что электрические магнитные взаимодействия передаются промежуточной средой и что именно в этой среде разыгрываются основные электрические и магнитные процессы.
В
работах Максвелла идеи Фарадея
подверглись дальнейшему
При этом теория Максвелла не только объяснила уже известные факты, но и предсказала новые и важные явления. Совершенно новым в этой теории явилось предположение Максвелла о магнитном поле токов смещения. На основе этого предположения Максвелл теоретически предсказал существование электромагнитных волн, т. е. переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. Теоретическое исследование свойств электромагнитных волн привело затем Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. В дальнейшем электромагнитные волны действительно были получены на опыте, а еще позднее электромагнитная теория света, а с нею и вся теория Максвелла получили полное и блестящее подтверждение.
При этом хочется отметить, что, несомненно, электромагнитная картина мира по сравнению с механистической картиной мира представляла собой значительный шаг вперед в познании окружающего мира. Многие детали электромагнитной картины мира сохранились в современной естественно-научной картине мира: понятие физического поля, электромагнитная природа сил, ядерная модель атома, дуализм корпускулярных и волновых свойств и многое другое. В то же время в электромагнитной картине мира, как и в механистической, господствовали однозначные причинно-следственные связи, по-прежнему все было жестко определено, характерна метафизическая омертвелость, внутренние противоречия отсутствовали. Открытые Максвеллом и Больцманом вероятностные закономерности не признавались фундаментальными, и они не включались ни в механистическую, ни в электромагнитную картину мира. Столь же однозначными, жесткими представлялись и максвелловские законы, управляющие электромагнитным полем8.
Таким образом, девятнадцатый век подвел к пониманию диалектики природы, но сам век еще оставался на позициях метафизического материализма. Нужен был диалектический материализм9.
Необходимо отметить, что в настоящее время популярна идея о том, что в истории науки со времени становления ее как социального института в XVII в. произошли четыре глобальные революции и были соответственно три периода в развитии науки, различающиеся по типам преобладающей рациональности10.
Первая научная революция произошла в XVII в. и завершилась становлением классического естествознания. С этого времени основное внимание уделялось поиску очевидных, наглядных принципов бытия, на базе которых можно строить теории, объясняющие и предсказывающие опытные факты. В соответствии с распространенной идеей о возможности реакции (сведения) всего знания о природе к фундаментальным принципам и представлениям механики строилась и развивалась механистическая картина природы, которая выступала одновременно и как картина реальности применительно к сфepe физического знания, и как общенаучная картина мира. Преобладали представления о познании как наблюдении и экспериментировании с объектами природы, которые раскрывают тайны своего бытия познающему разуму.
Такая система взглядов соединялась с представлениями об изучаемых объектах как о малых системах или механических устройствах, которые характеризовались относительно небольшим количеством элементов, их силовыми взаимодействиями и жестко предопределенными (детерминированными) связями. Их знание связано с предположениями о том, что свойства целого полностью определяются состояниями и свойствами его отдельных частей, вещь можно представлять как относительно устойчивое тело, а процесс - как перемещение тел в пространстве с гением времени. Это обеспечивало успех механики и предопределяло редукцию (сведение) к ее понятиям представлений всех других областей естественно-научного исследования.
Вторая
научная революция произошла
в конце XVIII - первой половине XIX в. и
отмечена переходом к дисциплинарно
организованному естествознанию
Итак, первая и вторая глобальные революции в естествознании характеризуются формированием и развитием классической науки и ее стиля мышления.
В свою очередь, в конце XIX-начале XX в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытие взаимосвязи вещества и энергии.
Так, проникая в область микромира, физики столкнулись с неожиданными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и, главным образом, Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана квантовая механика12. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопределенностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот.
Наконец, в 1905 г. А. Эйнштейн создал специальную теорию относительности, в корне изменившую научное представление о пространстве и времени, в которой свойства пространства и времени связаны с материей и вне материи теряют смысл.
Важный методологический урок, который был получен из специальной теории относительности, состоит в том, что все движения, происходящие в природе, имеют относительный характер, в природе не существует никакой абсолютной системы отсчета и, следовательно, абсолютного движения, которые допускала ньютоновская механика13. Здесь пространство и время носят относительный характер.
Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения, принципиально отличной от классической ньютоновской теории. Эта теория впервые ясно и четко установила связь между свойствами движущихся материальных тел и их пространственно-временной метрикой. Теоретические выводы из нее были экспериментально подтверждены во время наблюдения солнечного затмения. Согласно предсказаниям теории, луч света, идущий от далекой звезды и проходящий вблизи Солнца, должен отклониться от своего прямолинейного пути и искривиться, что и было подтверждено наблюдениями. Общая теория относительности показала глубокую связь между движением материальных тел, а именно тяготеющих масс и структурой физического пространства-времени.
Таким образом, третья научная революция была связана со становлением неклассического естествознания в период с конца XIX до середины XX в. В это время в физике открыта делимость атома, происходит становление релятивистской и квантовой теории; в космологии формулируется концепция нестационарной Вселенной; в химии начинается развитие квантовой химии; в биологии происходит становление генетики; возникают кибернетика и теория систем, сыгравшие огромную роль в построении современной научной картины мира14.
Идеалы и нормы неклассической науки связаны с пониманием относительной истинности теорий и картины природы, выработанной на том или ином этапе развития естествознания. Вместо представлений о единственно истинной теории допускается истинность некоторого количества отличающихся друг от друга теоретических описаний одной и той же реальности. Образцом служили идеалы и нормы квантово-релятивистской физики, где в качестве необходимого условия объективности объяснения и описания выступала фиксация особенностей средств наблюдения, взаимодействующих с объектом. Новая система познавательных идеалов и норм открывала путь к освоению сложных саморегулирующихся систем с уровневой организацией, наличием относительно независимых и изменчивых подсистем, вероятностным взаимодействием их элементов, существованием управляющего уровня и обратных связей, обеспечивающих целостность системы.
Включение
таких систем в процесс научного
исследования вызвало трансформации
картин мира многих областей естествознания.
Создавались предпосылки для
построения целостной картины природы,
отмеченной иерархической
Четвертая научная революция происходит в современную эпоху, начиная с последней трети XX в. В ходе этой научной революции рождается новая, постнеклассическая наука. Характер научной деятельности меняется в связи с применением научных знаний практически во всех сферах социальной жизни, а также вследствие радикальных изменений в средствах хранения и получения знаний (компьютеризация науки, появление сложных приборных комплексов и т.д.). На передний план науки выдвигаются междисциплинарные и проблемно ориентированные формы исследовательской деятельности. Если классическая наука была ориентирована на постижение все более сужающегося, изолированного фрагмента действительности - предмета конкретной научной дисциплины, то специфику современной науки определяют комплексные исследовательские программы, в которых принимают участие специалисты из различных областей знания15. Кроме того, в процессе определения исследовательских приоритетов наряду с собственно познавательными целями все большую роль начинают играть цели экономического и социально-политического характера.
В настоящее время усиливаются процессы взаимодействия частных картин мира, они становятся взаимозависимыми и предстают как фрагменты целостной общенаучной картины мира. На ее развитие оказывают влияние и достижения фундаментальных наук, и результаты междисциплинарных прикладных исследований. В их рамках приходится сталкиваться со сложными системными объектами, которые в отдельных дисциплинах обычно изучаются лишь фрагментарно, поэтому эффекты, обусловленные их системностью, могут быть обнаружены только при синтезе фундаментальных и прикладных задач в проблемно ориентированном поиске.
Объектами современных междисциплинарных исследований все чаще становятся открытые и саморазвивающиеся системы, что начинает определять характер современного, постнеклассического естествознания. Ориентация современного естествознания на исследование сложных, развивающихся систем приводит к трансформации идеалов и норм исследовательской деятельности. Историчность комплексного объекта и изменчивость его поведения предполагают построение возможного поведения системы в точках бифуркации (раздвоения). В естествознание начинает внедряться идеал исторической реконструкции, причем не только в дисциплинах, традиционно изучающих эволюционные объекты (геология, биология, география), но и в современной космологии и астрофизике.
Информация о работе Основные этапы становления естествознания