Автор: Пользователь скрыл имя, 13 Мая 2012 в 13:43, контрольная работа
Актуальность. Естествознание представляет собой одну из основных форм человеческого знания, а именно о природе. Таких форм знания три: о природе, обществе и человеческом мышлении. Естествознание представляет теоретическую основу промышленной и сельскохозяйственной техники и медицины. Оно является также основой диалектики и философского материализма. Диалектика природы немыслима без естествознания.
Введение
Особенности и закономерности развития современного естествознания
Классификация наук
Крупнейшие достижения науки в XIX-XXI веках.
Астрономия
Астрофизика
Космология
Биология
Медицина
Физика
Математика
Информатика и кибернетика
Химия
Заключение
Список использованной литературы
Наличие в единой человеческой культуре двух разнородных типов (естественнонаучного и гуманитарного) стало предметом философского анализа еще в XIX веке, в пору формирования большого количества наук о проявлениях человеческого духа (религиоведения, эстетики, теории государства и права).
В двадцатом веке проблема выбора и изучения того или иного типа науки стало очень остро. То есть разрыв между гуманитариями и «естественниками» увеличился, существовала проблема статуса и общественной значимости двух типов наук: естественных и гуманитарных.
К настоящему времени наука превратилась в весьма сложную, многоплановую и многоуровневую систему знаний. Главный способ ее организации и классификации – дисциплинарный. То есть классификация наук производиться по дисциплинам, которые они изучают.
Вновь возникающие отрасли научного знания всегда обособлялись по предметному признаку – в соответствии с вовлечением в процесс познания новых фрагментов реальности. Вместе с тем, в системе «разделения» научных дисциплин есть и небольшой «привилегированный» класс наук, выполняющих интегрирующие функции по отношению ко всем прочим разделам научного знания, - математика, логика, философия, кибернетика, синергетика и т.д. их предметная область предельно широка, как бы «сквозная» для всей системы научного знания, что позволяет им выступать в роли методологической основы научного познания вообще.
Обобщая все вышесказанное, можно сказать, что в современном естествознании, науки подразделяют не только на типы, которые были рассмотрены ранее, но и на группы или дисциплины:
общественные науки;
естественные науки;
технические науки.
Общественные науки изучают человека и общество, взаимоотношения и взаимосвязь между ними. Так же к общественным наукам относятся, например, история, экономика, право.
Естественные науки - изучают физику, химию, биологию. Биология охватывает все процессы, протекающие в живой природе, физика – в неживой, а химия является пограничной наукой и делится на органическую и неорганическую.
К техническим наукам принято относить робототехнику, самолетостроение, электронику. То есть к технически наукам относят те, в которых требуются знания различных или особенных видов техники и технического оснащения.
В учебной литературе рассматривается много различных теорий классификаций наук, каждая из которых рассматривает классификационную структуру наук по - разному.
Интересную попытку дать общую классификацию теоретических и практических (технических в широком понимании) наук предпринял сербский ученый и инженер Милутин Миланкович в своей книге, посвященной науке и технике в их историческом развитии (1955 г.). Он исходит из того, что человеческое познание имеет два источника: наблюдение, или эмпирию, и размышление, или «рационализм».
По мнению автора, из этих двух источников произошли все науки: во-первых, эмпирические, или дискриптивные, которые возникли на основе наблюдения, и, во-вторых, рационалистические, или точные, возникшие путем размышления. Науки обоего рода взаимно оплодотворяются и дополняются, причем среди ученых были не только эмпирики или рационалисты, но и такие исследователи, которые сочетали в себе острых наблюдателей природы и гениальных мыслителей.
Приняв за исходное указанное деление всех наук на две основные группы, Миланкович переходит к более детальному их подразделению. При этом он имеет в виду постепенное развитие отдельных наук и их нынешнее состояние.
Схема Миланковича составляется следующим образом: наносятся, семь концентрических кругов, в результате чего образуется один внутренний круг наименьшего радиуса и шесть последовательно окружающих его кольцевых площадей, все большего и большего размера. Этим семи геометрическим участкам соответствуют семь основных областей наук, которые обозначены на схеме XXXIV римскими цифрами.
Внутренний круг (I) представляет математические науки, к которым, согласно Миланковичу, относятся математика и геометрия. «Они являются рационалистическими науками в подлинном смысле слова, так созданы только путем логического рассуждения. Их строгая логика и их совершенный язык, выраженный математическими образцами, сделали их основой тех наук, которые называются точными».
Согласно Миланковичу, науки, занимающие внутренние сферы в его геометрической схеме, выступают в качестве основных по отношению к «окружающим» их наукам, занимающим внешние сферы в той же схеме.
Первое кольцо, примыкающее непосредственно к математическим наукам, занимают точные науки (II). Сюда он относит рациональную и небесную механику, астрономию, физику и химию. Этим наукам, но его словам, «удалось открыть законы природы и выразить их математическим языком настолько точно, что изучаемые ими явления природы можно проследить шаг за шагом и в будущем». Не только астроном, но и физик, и химик заранее знают, как именно будут протекать соответствующие процессы.
Следующее кольцо включает в себя практические науки, являющиеся применением точных наук, прежде всего технические науки (III). Это означает, что Миланкович не разрывает теоретические и практические знания, как это делал Конт, а пытается связать их между собой, показать их с точки зрения существующего между ними взаимодействия. Если по отношению к точным наукам математика играет роль их основы, то по отношению к техническим наукам роль основы играют в свою очередь точные науки, на прочном фундаменте которых только и могла быть создана современная техника.
Третье по счету кольцо изображает, по автору, науки, называемые дискриптивными неорганическими естественными науками: это метеорология, минералогия, геология и география. Он утверждает, что эти науки называются дискриптивными, что они сообщают якобы только фактические данные, и не достигли еще того, чтобы раскрывать механизм явлений и предсказывать их протекание.
Пятую кольцевую область схемы представляют науки, охватывающие применение биологических наук, медицину, ветеринарию, агрономическую и технологическую биологию.
Наконец, последнюю (внешнюю) кольцеобразную область занимают духовные и общественные науки, самыми важными из которых, по его мнению, являются: философия, исторические и правовые науки, социология и лингвистика.
В схеме Миланковича интересна попытка сочетать теоретические науки с практическими, которые следуют непосредственно за первыми в случае естественных наук: второе кольцо (технические науки) следует за первым (физико-химические науки) и пятое кольцо (практическая биология) — за четвертым (биологические науки). Однако этот принцип не выдержан по отношению к другим наукам (математическим, геолого-географическим и гуманитарным).
Схема классификации наук Миланковича
Здесь цифры обозначают: 0 — область математических наук, I — физико-химических, II — технических, III — геолого-географических, IV — биологических, V — медицинских и сельскохозяйственных, VI — гуманитарных.
Но главная слабость его схемы состоит в том, что здесь не учитываются переходные и промежуточные науки: концентрические разделительные линии резко обособляют одну область знания от другой, не оставляя места для перехода, например, от химии (и физики) к биологии или к геологии.
Крупнейшими достижениями астрономии начала XX века стали: открытие закономерности, связывающей спектральный класс и светимость звёзд (диаграмма Герцшпрунга — Рассела стала для астрономии тем же, что и таблица Менделеева для химии) и разрешение на отдельные звёзды спиральных туманностей — галактик, что вывело астрономию за пределы Млечного пути — нашей Галактики и по своему значению сравнимо с переходом от геоцентрической к гелиоцентрической системам.
Дальнейшее развитие астрономии в XX веке продолжило тенденцию XIX века — переход от описания небесных тел и их движения с позиций классической механики к изучению их строения и эволюции с использованием данных и концепций физики. Два основных открытия физики XX века — теория относительности и квантовая механика позволили астрономии не только объяснить накопившийся к началу XX века объём противоречивых фактов, но и поставить новые задачи исследований, что привело к созданию космологии и астрофизики. Примечательно, что первые подтверждения общей теории относительности пришли именно из астрономии — ими стали объяснение природы смещения перигелия орбиты Меркурия, необъяснимое в рамках теории тяготения Ньютона, и отклонение света тяготеющей массой, подтверждённое наблюдением отклонения видимого положения звёзд у лимба Солнца при его затмении.
Другим следствием синергического развития астрономии и физики стало появление новых средств наблюдения, то есть радиоастрономии, внеатмосферной рентгеновской и гамма-астрономии — и выход за пределы узкого (всего ~300 нм!) видимого диапазона к открытию множества поразительно разнообразных астрономических объектов. Если в начале XX века список астрономических объектов за пределами Солнечной системы исчерпывался туманностями, звёздами и их гипотетическими планетными системами, то к началу XXI века список типов наблюдаемых объектов исчисляется десятками.
Создание гидростатической эддингтоновской модели строения звёзд и понимание термоядерной природы источника их энергии позволило количественно интерпретировать диаграмму Герцшпрунга — Рассела. Можно продолжить аналогию с таблицей Менделеева: как квантовая механика объяснила закономерности, зафиксированные в ней, так и гидростатическая модель с термоядерным источником потребовала существования главной последовательности диаграмму Герцшпрунга — Рассела и её дополнительных ветвей — как результата эволюции звёзд при смене в них различных типов термоядерных реакций.
Квантовая теория вырожденного газа объяснила «парадокс плотности» белых карликов и определила их предельную массу (предел Чандрасекара), выше которой давление вырожденного электронного газа не может остановить их коллапс в нейтронные звёзды. Эта же теория, но уже для вырожденного нейтронного газа, определила и верхний предел массы нейтронных звёзд (предел Оппенгеймера — Волкова), при превышении которого происходит коллапс в чёрные дыры.
Результатом стала теория эволюции звёзд различных масс на всех её стадиях — от конденсации протозвёздных туманностей, до таких феноменов поздних стадий эволюции звёзд, как планетарные туманности, вспышки новых и сверхновых звёзд и разнобразные формы наблюдаемой активности звёздных остатков: пульсары, магнетары, барстеры, рентгеновские источники аккреционных дисков, микроквазары и т. п.
Понимание природы пространства-времени и её связи с гравитацией позволило создать космологические модели Эйнштейна и Фридмана, основанные на уравнениях общей теории относительности, в рамках которых успешно разрешались классические космологические парадоксы, и, в сочетании с открытием Хабблом красного смещения, дало целостную картину Вселенной — Вселенной динамической и эволюционирующей. Понимание — и экспериментальное подтверждение — динамичности вселенной привело к снятию запрета на вопрос о её происхождении и её «начальном моменте». Результатом стала гипотеза, а затем и стандартная теория Большого Взрыва, в большинстве деталей совпадающая с наблюдаемой картиной Вселенной. Открытие реликтового микроволнового излучения и наблюдаемое соотношение лёгких элементов — результатов первичного нуклеосинтеза — одни из самых ярких подтверждений этой теории.
Прогресс в биологии за последнее столетие был необыкновенно велик. Важнейшее событие: появление молекулярной биологии. Всё началось с открытия Джеймсом Уотсоном и Фрэнсисом Криком структуры молекулы ДНК. После этого прорыва были быстро открыты способы кодирования наследственной информации. Наиболее знаменитое сейчас последствие этого прорыва — расшифровка генетического кода человека.
Открытие устройства наследственного аппарата сделало возможным также искусственное изменение наследственной информации — генную инженерию. Уже сейчас результаты генной инженерии используются для получения новых, более продуктивных растений, при производстве лекарств с помощью генетически модифицированных микроорганизмов и т. д. В ближайшем будущем следует ожидать создание генетической терапии: коррекции повреждений генетического аппарата клеток человека, что поможет избавить человечество от наследственных заболеваний.
Грибок — производитель пенициллина.
Революционным открытием в медицине XX века явилось открытие и широкое внедрение пенициллина, открывшее целую эру антибиотикотерапии и антибактериальной химиотерапии и спасшее жизни миллионов человек. За пенициллином вскоре последовал стрептомицин — первый антибиотик, оказавшийся активным против опаснейшей микобактерии туберкулёза, а затем целая плеяда антибиотиков разного химического строения.
Вторым важнейшим открытием медицины XX века стал мустарген (нитроген мустард, эмбихин) — исторически первый противоопухолевый химиопрепарат алкилирующего типа, азотистый аналог иприта. Он впервые сделал возможным достижение хотя бы коротких клинических ремиссий считавшихся до того абсолютно смертельными лейкозов. И тем самым доказал врачам, что лейкозы можно и нужно лечить и что они потенциально могут быть излечимыми. За мустаргеном последовал метотрексат, а затем десятки цитостатических препаратов, давших надежду на излечение сотням тысяч больных лейкозами и злокачественными опухолями. Революция в области противоопухолевой химиотерапии продолжается и сегодня, на наших глазах, и связана с расшифровкой генетических мутаций, делающих клетку злокачественной, и разработкой химиопрепаратов, избирательно «выключающих» патологические опухолетрансформирующие гены. Одним из примеров этого нового класса химиопрепаратов является иматиниб (Гливек).
Третьим важнейшим событием в медицине XX века безусловно следует назвать открытие и широкое внедрение циклоспорина А, сделавшее возможной аллотрансплантацию органов и тканей от человека человеку и открывшее целую эру трансплантологии. Успешная трансплантация почек и печени дала надежду на жизнь многим больным с тяжёлой почечной или печёночной недостаточностью.
Информация о работе Естествознание и классификация наук совеременного времени