Автор: Пользователь скрыл имя, 17 Марта 2012 в 22:25, курсовая работа
Задача управления запасами возникает, когда необходимо создать запас материальных ресурсов или предметов потребления с целью удовлетворения спроса на заданном интервале времени (конечном или бесконечном). Для обеспечения непрерывного и эффективного функционирования практически любой организации необходимо создание запасов. В любой задаче управления запасами требуется определять количество заказываемой продукции и сроки размещения заказа. Спрос можно удовлетворить путём однократного создания запаса на весь рассматриваемый период времени или посредством создания запаса для каждой единицы времени этого периода. Эти два случая соответствую избыточному запасу (по отношению к единице времени) и недостаточному запасу (по отношению к полному периоду времени).
Введение
1. Обобщенная модель управления запасами 3
2. Типы моделей управления запасами 5
3. Детерминированные модели 8
3.1. Однопродуктовая статическая модель 9
3.2. Однопродуктовая статическая модель с «разрывами» цен 13
3.3. Многопродуктовая статическая модель с ограничениями складских помещений 15
3.4. Однопродуктовая N-этапная динамическая модель 17
3.4.1. Частный случай убывающих или постоянных предельных затрат 19
4. Заключение 21
Рисунок 4.
Пусть К – затраты на оформление заказа, имеющие место всякий раз при его размещении и предположении, что затраты на хранение единицы заказа в единицу времени равны h следовательно, суммарные затраты в единицу времени TCU(y) как функцию от у можно представить в виде:
TCU(y) = Затраты на оформление заказа в единицу времени
+ Затраты на хранение запасов в единицу времени =
= .
Как видно из рисунка 3, продолжительность цикла движения заказа составляет t0=y/ и средний уровень запаса равен y/2.
Оптимальное значение у получается в результате минимизации TCU(y) по у. Таким образов, в предположении, что у – непрерывная переменная, имеем: ,
откуда оптимальное значение размера заказа определяется выражением: .
(Можно доказать, что y*доставляет минимум TCU(y), показав, что вторая производная в точке у* строго положительна). Полученное выше выражение для размера заказа обычно называют формулой экономичного размера заказа Уилсона.
Оптимальная стратегия модели предусматривает заказ у* единиц продукции через каждые t0*=y*/ единиц времени. Оптимальные затраты TCU(y*), полученные путем непосредственной подстановки составляют.
Для большинства реальных ситуаций существует (положительный) срок выполнения заказа (временное запаздывание) L от момента размещения заказа до его действительной поставки. Стратегия размещения заказов в приведенной модели должна определять точку возобновления заказа. Рисунок 5 иллюстрирует случай, когда точка возобновления заказа должна опережать на L единиц времени ожидаемую поставку. В практических целях эту информацию можно просто преобразовать, определив точку возобновления заказа через уровень запаса, соответствующий моменту возобновления заказа. На практике это реализуется путем непрерывного контроля уровня запаса до момента достижения очередной очки возобновления заказа. Возможно, по этой причине модель экономичного размера заказа иногда называют моделью непрерывного контроля состояния заказа. Следует заметить, что с точки зрения анализа в условиях стабилизации системы срок выполнения заказа L можно всегда принять меньше продолжительности цикла t0* .
Принятые в рассмотренной выше модели допущения могут не соответствовать некоторым реальным условиям в следствие вероятстного характера спроса. На практике получил распространение приближенный метод, сохраняющий простоту модели экономичного размера заказа и в то же время в какой-то мере учитывающий вероятностный характер спроса. Идея метода чрезвычайно проста. Она предусматривает создание некоторого (постоянного) буферного запаса на всем горизонте планирования. Размер резерва определяется таким образом, чтобы вероятность истощения запаса в течение периоды выполнения заказа L не превышало наперед заданной величины. Предположим, что f(x) – плотность распределения вероятностей спроса в течение этого срока. Далее предположим, что вероятность истощения запаса в течение периода L не должна превышать . Тогда размер резервного запаса B определяется из условия: , где L представляет собой потребление в течение времени L. Изменение запаса при наличии резерва показано на рисунке 6.
Рисунок 6
В моделях предыдущего полраздела не учитывается удельные затраты на приобретение товара, т.к. они постоянны и не влияют на уровень запаса. Однако не редко цена единицы продукции зависит от размера закупаемой партии. В таких случаях цены меняются скачкообразно или предоставляются оптовые скидки. При этом в модели управления запасами необходимо учитывать затраты на приобретение.
Рассмотрим модель управления запасами с мгновенным пополнением запаса при отсутствии дефицита. Предположим, что цена единицы продукции равна с1 при y<q и равна с2 при y>=q, где с1>c2 и q – размер заказа, при превышении которого предоставляется скидка. Тогда суммарные затраты за цикл помимо издержек оформления заказа и хранения запаса должны включать издержки приобретения.
Суммарные затраты на единицу времени при y<q равны
.
При y>=q эти затраты составляют
.
Графики этих двух функций приведены на рисунке 7. Пренебрегая влиянием снижения цен, обозначим через ym размер заказа, при котором достигается минимум величин TCU1 и TCU2. Тогда . Из вида функции затрат TCU1 и TCU2, приведенных рисунке 7 следует, что оптимальный размер заказа y* зависит от того, где по отношению к трем показанным на рисунке зонам I, II и III находится точка разрыва цены q. Эти зоны находятся в результате определения q1(>ym) из уравнения TCU1(ym)=TCU2(q1).
Рисунок 7
Так как значение ym известно (=), то решение уравнения дает значение величины q1. Тогда зоны определяются следующим образом:
Зона I: 0<=q<ym,
Зона II: ym<=q<q1,
Зона III: q>=q1.
На рисунке 8 приведено графическое решение уравнения для рассматриваемого случая, зависящее от того, где находится q по отношению к зонам I, II и III. В результате оптимальный размер заказа y* определяется следующим образом:
Алгоритм определения y* можно представить в следующем виде:
1. Определить ym=. Если q<ym (зона I), то y*=ym и алгоритм закончен. В противном случае перейти к шагу 2.
2. Определить q1 из уравнения TCU1(ym)=TCU2(q1) и установить, где по отношению к зонам II и III находится значение q.
а. Если ym<=q<=q1 (зона II), то y*=q.
б. Если q>=q1 (зона III), то y*=ym.
Рисунок 8
Эта модель предназначена для систем управления запасами, включающие n(>1) видов продукции, которая хранится на одном складе ограниченной площади. Данное условие определяет взаимосвязь между различными видами продукции может быть включено в модель как ограничение.
Пусть А – максимально допустимая площадь складского помещения для n видов продукции; предположим, что площадь, необходимая для хранения единицы продукции i-го вида, то ограничение на потребность в складском помещении принимают вид .
Допустим, что запас продукции каждого вида пополняется мгновенно и скидки цен отсутствуют. Предположим далее, что дефицит не допускается. Пусть i, Ki и hi – интенсивность спроса, затраты на оформление заказа и затраты на хранение единицы продукции в единицу времени для i-го вида продукции соответственно. Общие затраты по продукции каждого вида, по существу, будут теми же, что и в случае эквивалентной однопродуктовой модели. Таким образом, рассматриваемая задача имеет вид минимизировать при для всех i.
Общее решение этой задачи находится методом множителей Лагранжа. Однако, прежде чем применять этот метод, необходимо установить, действуют ли указанное ограничение, проверив выполнимость ограничений на площадь склада для решения неограниченной задачи. Если ограничение выполняется, то оно избыточно, и им можно пренебречь.
Ограничение действует, если оно не выполняется для значений . В таком случае нужно найти новое оптимальное значение yi, удовлетворяющее ограничению на площадь склада в виде равенства. Этот результат достигается построением функции Лагранжа вида , где (<0) – множитель Лагранжа.
Оптимальные значения yi и можно найти, приравняв нулю соответствующие частные производные, что дает
,
.
Из второго уравнения следует, что значение должно удовлетворять ограничению на площадь склада в виде равенства. Из первого уравнения следует, что .
Заметим, что зависит от оптимального значения * множителя . Кроме того, при *=0 значение является решением задачи без ограничения.
Значение * можно найти методом систематических проб и ошибок. Так как по определению в поставленной выше задаче минимизации <0, то при последовательной проверке отрицательных значений найденное значение * будет одновременно определять значения y*, которые удовлетворяют заданному ограничению в виде равенства. Таким образом, в результате определения * автоматически получаются значения y* .
В этой модели предполагается, что, хотя спрос достоверно известен, он может изменяться от этапа к этапу. Уровень запаса контролируется периодически. Хотя запаздывание поставки (выраженное фиксированным числом периодов) допустима, в модели предполагается, что пополнение запаса происходит мгновенно в начале этапа. Наконец, дефицит не допускается.
Построение динамической детерминированной модели сводится к конечному горизонту времени. Это объясняется тем, что для получения числового решения соответствующих задач требуется использование метода динамического программирования, который в данном случае можно практически применять только при конечном числе этапов (шагов). Однако это не является серьёзным препятствием, т.к. спрос в отдалённом будущем обычно не оказывает существенное влияние на решение, принимаемое для рассматриваемого конечного горизонта времени. Кроме того, как правило, не имеет смысла предполагать, что продукция будет храниться в запасе бесконечно.
Определим для этапа i, i=1, 2, . . . , N, следующие величины:
zi – количество заказанной продукции (размер заказа),
i – потребность в продукции (спрос),
xi – исходный запас (на начало этапа i),
hi – затраты на хранение единицы запаса, переходящей из этапа i в этап i+1,
Ki – затраты на оформление заказа,
ci(zi) – функция предельных затрат, связанных с закупкой (производством) при заданном значении zi.
Так как дефицит не допускается, то требуется найти оптимальное значения zi, минимизирующие общие затраты на оформление заказов, закупку и хранение по всем N этапам. Затраты на хранение предполагаются пропорциональными величине , которая представляет собой объем запаса, переходящего из этапа i в этап i+1. В результате затраты на хранение на этапе i равны hixi+1. Это предположение вводится исключительно с целью упрощения, т.к. модель легко можно обобщить на случай произвольной функции затрат Hi(xi+1), заменив hixi+1 на Hi(xi+1). Аналогично для оценивания затрат на хранение можно воспользоваться величинами xi или (xi+xi+1)/2.
Построение модели динамического программирования упрощается, если представить задачу схематически. Каждый этап соответствует одному шагу. Используя обратное рекуррентное уравнение, определим состояние системы на шаге i как объем исходного запаса xi. Пусть fi(xi) – минимальные общие затраты на этапах i, i+1, … , N. Рекуррентное уравнение имеет вид
Прямое рекуррентное уравнение можно получить, определив состояние на шаге i как объем запаса на конец этапа i. Эти состояния заданы величинами xi+1. На любом шаге на величины xi+1 наложены следующие ограничения:
Таким образом, в предельном случае объем заказанной продукции zi на этапе i может быть настолько велик, что запас xi+1 удовлетворяет спрос на всех последующих этапов.
Пусть fi(xi+1) – минимальные общие затраты на этапах 1, 2, … , N при заданной величине запаса xi+1 на конец этапа i. Тогда рекуррентное уравнение записывается в виде
Прямая и обратная постановка задачи с вычислительной точки зрения эквивалентны. Однако прямой алгоритм наиболее эффективен при анализе важного частного случая рассмотренной выше модели.
Рассмотренную модель динамического программирования можно использовать при любых функциях затрат. Важным частным случаем этой модели является такой, когда на этапе i как затраты на приобретение (производства), так и затрат на хранение на единицу продукции является постоянными или убывающими функциями xi и xi+1 соответственно. В таких условиях предельные затраты постоянны или убывают. Типичные примеры таких функций затрат приведены на рисунке 9. С математической точки зрения эти функции являются вогнутыми. Случай (а) соответствует постоянным предельным затратам. Случай (б) характерен для многих функций затрат на производство (или закупку), когда независимо от объёма производства на оформление заказа требуются затраты К. В этом случае предельные затраты постоянны, но если при zi=q предоставляется скидка или происходит разрыв, то предельные затраты при zi>q уменьшается. Случай (в) отражает общий вид вогнутой функции.