Автор: Пользователь скрыл имя, 11 Января 2012 в 15:23, курсовая работа
группе каротиноидов относят вещества, окрашенные в желтый или оранжевый цвет. Наиболее известные представители каротиноидов — каротины — пигменты, дающие специфическую окраску корням моркови, а также лютеин — желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от присутствующих в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томата обусловлена каротиноидом ликопином.
1. Обзор литературы
1.1 Химическая природа, свойства и виды каротиноидов
1.1.1 Физико-химические свойства каротиноидов
1.1.2 Химическая природа и виды каротиноидов
1.2 Содержание каротиноидов в плодах и овощах
1.3 Роль каротиноидов для организма человека
1.3.1 Значение и функции
1.3.2 Нормы потребления
1.3.3 Усвоение каротиноидов организмом человека
1.4 Методы количественного определения каротиноидов
1.5 Использование каротиноидов
Заключение
Список использованных источников
Министерство образования и науки Российской Федерации
Федеральное
агентство по образованию
Курсовая работа
По дисциплине
Товароведение и экспертиза продовольственных товаров
Тема
Характеристика
каротиноидов плодов и овощей
2010
Содержание
Введение
1. Обзор литературы
1.1 Химическая
природа, свойства и виды
1.1.1 Физико-химические свойства каротиноидов
1.1.2 Химическая природа и виды каротиноидов
1.2 Содержание каротиноидов в плодах и овощах
1.3 Роль каротиноидов для организма человека
1.3.1 Значение и функции
1.3.2 Нормы потребления
1.3.3 Усвоение
каротиноидов организмом
1.4 Методы
количественного определения
1.5 Использование каротиноидов
Заключение
Список использованных источников
Каротиноиды — наиболее многочисленная и широко распространенная группа природных пигментов. Они обнаружены у всех представителей растительного царства, как в фотосинтезирующих, так и в нефотосинтезирующих тканях, а также часто встречаются у микроорганизмов. Они полностью или частично обуславливают окраску многих животных, особенно птиц, рыб, насекомых, являются основой зрительных пигментов, ответственных за восприятие света и различение цветов. Они нерастворимы в воде, но растворяются в органических растворителях.
Каротиноиды образуются высшими растениями, водорослями, фототрофными бактериями и рядом хемотрофных бактерий. Кроме того, каротиноиды синтезируют некоторые мицелиальные грибы и дрожжи. Присутствуют каротиноиды также в организме некоторых членистоногих, рыб, птиц и млекопитающих, но самостоятельно эти пигменты не образуются, а поступают с пищей и служат источником обогащения организма витамином А. Каротиноиды находятся у растений и микроорганизмов в свободной форме, могут образовывать гликозиды, каротино-белковые комплексы, но значительно чаще встречаются в виде эфиров, длинноцепочечных жирных кислот.
К группе каротиноидов относят вещества, окрашенные в желтый или оранжевый цвет. Наиболее известные представители каротиноидов — каротины — пигменты, дающие специфическую окраску корням моркови, а также лютеин — желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от присутствующих в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томата обусловлена каротиноидом ликопином.
По химической природе каротиноиды относятся к огромному классу терпеноидов, включающих также эфирные масла, фитогормоны, стероиды, сердечные гликозиды, жирорастворимые витамины, млечный сок. Их углеводородная структура состоит из цепи двух или более изопренов (С5-углеводородов). Каротиноиды относятся к тетратерпенам; они состоят из длинных ветвящихся углеводородных цепей, содержащих несколько сопряженных двойных связей, заканчивающихся на одном (α-каротин) или обоих концах (β-каротин) кольцевой циклической структурой — иононовым кольцом.
Длинная цепь сопряженных двойных связей образует хромофор всех каротиноидов, что позволяет отнести их к природным пигментам. Человеческому глазу каротиноиды с 7–15 конъюгированными двойными связями видятся в цвете от желтого до красного. Их хромофорные электронные системы находятся также под влиянием других дополнительных двойных связей и различных функциональных групп (например, карбонильной, эпокси-группы и др.), которые также оказывают влияние на поглощение волн света определенных длин и, как следствие, на цвет молекул. [2]
К общим свойствам каротиноидов можно отнести их нерастворимость в воде и хорошую растворимость во многих органических растворителях (хлороформе, бензоле, гексане, петролейном эфире, четыреххлористом водороде и др.). Гидроксилсодержащие каротиноиды лучше растворяются в спиртах (метанол, этанол). Растворы каротиноидов в органических растворителях при спектрофотометрических исследованиях дают характеристические полосы поглощения в основном в видимой области спектра, а стереоизомеры показывают их также и в ультрафиолетовой области. Это один из наиболее точных показателей, используемых при идентификации этих веществ.
Характерной является также особенность каротиноидов избирательно абсорбироваться на минеральных и некоторых органических абсорбентах, что позволяет разделять их при помощи методов хроматографирования.
Для
отдельных каротиноидов характерны
некоторые специфические
Следует учитывать, что каротиноиды в чистом виде характеризуются высокой лабильностью — они весьма чувствительны к воздействию солнечного света, кислорода воздуха, нагреванию, воздействию кислот и щелочей. Под воздействием этих неблагоприятных факторов они подвергаются окислению и разрушению. В тоже время, входя в состав различных комплексов (например, протеиновых), они проявляют большую стабильность. [9]
Известна классификация каротиноидов, основанная на различиях химического строения этих пигментов. Каротиноиды делят, например, на каротины (содержат только углерод и водород) и гидроксикаротиноиды, в молекулу которых входит также кислород. Последние называют иногда общим термином ксантофиллы. Другая химическая классификация делит каротиноиды на ациклические, моноциклические и бициклические, Имеется также классификация каротиноидов, в основу которой положены отличия в функциональном значении этих пигментов. [3]
В зависимости от степени поглощения каротиноиды разделяются на 2 группы: каротины и ксантофилы. Все незамещенные каротиноиды — каротины. Они не содержат атомов кислорода, являются чистыми углеводородами и обычно имеют оранжевый цвет. Наиболее известный представитель этой группы — β-каротин. Каротиноиды, окрашенные в цвета от желтого до красного характеризуются наличием кислородсодержащих функциональных групп и называются ксантофилами. Продукты распада дифференцируются как апо-, секо- и норкаротиноиды.
Из-за многочисленных двойных связей, обычно циклического окончания молекул и наличия ассимметричных атомов углерода каротиноиды имеют разнообразные конфигурации и стереоизомеры с различными химическими и физическими свойствами. Большинство каротиноидов имеют цис- и трансгеометрические изомеры. Атом углерода с 4 различными заместителями обусловливает возможность оптических R- или S-изомеров. Эти различия между молекулами одной и той же формулы оказывают заметное влияние на физические свойства и на эффективность каротиноидов как пигментов.
Одна
из характерных особенностей этих соединений
— наличие в них значительного числа сопряженных
двойных связей, образующих их хромофорные
группы, от которых зависит окраска. Все
натуральные каротиноиды могут рассматриваться
как производные ликопина — каротиноида,
обнаруженного в плодах томатов, а также
в некоторых ягодах и фруктах. Эмпирическая
формула ликопина С40Н56. Строение
ликопина представлено на рисунке 1
Рисунок
1 – химическая структура ликопина
Путем образования кольца на одном или обоих концах молекулы ликопина образуются его изомеры: α-, β- или γ-каротины (рисунки 2, 3, 4).
Рисунок
2 – химическая структура α-каротина
Рисунок
3 – химическая структура γ-каротина
Рисунок
4 – химическая структура β-каротина
Сопоставляя формулы, можно заметить, что α-каротин отличается от β-изомера положением двойной связи в одном из циклов, расположенных по концам молекулы. В отличие от α- и β-изомеров γ-каротин имеет только лишь один цикл. [2]
Каротины являются веществами, из которых образуется витамин А. Поскольку ликопин и каротины содержат 40 углеродных атомов, они могут рассматриваться как образованные восемью остатками изопрена. Все без исключения другие природные каротиноиды — производные четырех указанных выше углеводородов: ликопина и каротинов. Они образуются из этих углеводородов путем введения гидроксильных, карбонильных или метоксильных групп или же путем частичной гидрогенизации или окисления. [4]
В результате введения в молекулу β-каротина двух оксигрупп образуется каротиноид, содержащийся в зерне кукурузы и называемый цеаксантином С40Н56О2 (3,3'-диокси-β-каротин), его строение представлено на рисунке 5.
Рисунок
5 – химическая структура цеаксантина
Введение
двух оксигрупп в молекулу α-каротина
приводит к образованию лютеина С40Н56О2
(3,3'-диокси-α-каротина), изомера цеаксантина,
обнаруженного наряду с каротином в зеленых
частях растений. В результате присоединения
к молекуле β-каротина одного атома кислорода
с образованием фураноидной структуры
получается каротиноид цитроксантин С40Н56О,
содержащийся в кожуре цитрусовых (рисунок
6).
Рисунок
6 – химическая структура цитроксантина
Продуктами окисления каротиноидов с 40 углеродными атомами в молекуле являются кроцетин С20Н24О4, биксин С25Н30О4 и β-цитраурин С30Н40О2.
Кроцетин
– красящее вещество, находящееся
в рыльцах крокуса в соединении
с двумя молекулами дисахарида гентиобиозы
в виде гликозида кроцина. Кроцетин представляет
собой дикарбоновую кислоту (рисунок 7).
Рисунок
7 – химическая структура кроцетина
Биксин
– пигмент красного цвета, содержащийся
в плодах тропического растения Bixa
orellana, применяется для подкраски масла,
маргарина и других пищевых продуктов
(рисунок 8).
Рисунок
8 – химическая структура биксина
β-Цитраурин
находится в кожуре плодов цитрусовых,
его строение представлено на рисунке
9.
Рисунок
9 – химическая структура β-цитраурина
В
бурых водорослях обнаружен каротиноид
фукоксантин С40Н60О6,
который принимает участие в процессе
фотосинтеза в качестве так называемого
вспомогательного пигмента (рисунок 10).
Рисунок
10 – химическая структура фукоксантина
В организме человека и животных каротиноиды играют важную роль в качестве исходных веществ, из которых образуются витамины группы А, а также «зрительный пурпур», участвующий в зрительном акте. В растительном организме каротиноиды играют важную роль в процессе фотосинтеза. [2]
Исходя из химического строения каротиноидов, содержащих значительное количество двойных связей, можно предполагать, что они являются в растении переносчиками активного кислорода и принимают участие в окислительно-восстановительных процессах. На это указывает широкое распространение в растениях кислородных производных каротиноидов — эпоксидов, чрезвычайно легко отдающих свой кислород.
Примером
такого кислородного производного может
служить диэпоксид β-каротина (рисунок
11). [19]
Информация о работе Характеристика каротиноидов плодов и овощей