Пренатальная диагностика хромосомных заболеваний

Автор: Пользователь скрыл имя, 25 Февраля 2012 в 18:26, реферат

Описание работы

Установлено, что более 40% спонтанных абортов и около 7% мертворождений обусловлено хромосомными аберрациями (ХА). Патология, сопровождающая дисбаланс хромосомного материала, вызывает различные аномалии развития у носителей и может быть связана не только с множественными врожденными пороками развития (МВПР), но и с умственной и физической отсталостью, нарушениями полового развития,

Содержание

1) вступление
2)методы диагностики хромосомных заболеваний.
3)заключение
4)список использованной литературы

Работа содержит 1 файл

МЕДГЕНЕТИКА.doc

— 113.50 Кб (Скачать)

плода из амниотической жидкости уже после 10–14-суточного культивирования их в плоскодонных флаконах в CO2-инкубаторе. С помощью "пипеточного" метода У.Клауссена, суть которого заключается в индивидуальном сборе митотических клеток микропипеткой, удается приготовить любое необходимое количество G-дифференциально окрашенных метафазных пластинок уже к концу 1-й недели культивирования. Высокую эффективность имеет и метод in situ анализа метафаз в колониях фетальных клеток.
Анализ результатов раннего амниоцентеза и хорионбиопсии при сроке беременности 10–13 нед у женщин с развивающейся одноплодной беременностью показал, что обе методики имеют одинаковую эффективность при получении цитогенетического материала, однако увеличение риска перинатальных потерь на 2–3% при раннем амниоцентезе по сравнению с таковым при хорионбиопсии делает последнюю более перспективным методом ПД хромосомных болезней у плода в I триместре. Основным диагностическим материалом, используемым для цитогенетических исследований в I триместре

беременности, являются ворсины хориона. После трансабдоминальной хорионбиопсии средняя частота потерь плодов составляет 1–3%, а после трансцервикальной хорионбиопсии она равняется 6,3–14% .Доказано, что ее выполнение при сроке беременности менее 10 нед может привести к оромандибулярной гипоплазии (микрогнатии и микроглоссии) и более чем на порядок повышает частоту врожденных поперечных редукций конечностей, которая в общей популяции составляет 1,8 на 10 000 живорожденных. К несомненным достоинствам этой методики относятся возможность быстрого (через 1–2 сут) получения результата, ее относительная простота и экономичность, а также высокая эффективность, практически не зависящая от срока беременности. Наиболее часто при кариотипировании цитотрофобласта выявляются аутосомные анеуплоидии и структурные аберрации, несколько реже встречаются анеуплоидии по гоносомам, сверхкомплектные маркеры и триплоидии. Примерно у 1–2% женщин при кариотипировании ворсин хориона на 9–11-й неделе беременности обнаруживается анеуплоидия, чаще всего полная или мозаичная трисомия, при нормальном кариотипе плода. Такой ограниченный плацентарный мозаицизм обычно ассоциирован с внутриутробной задержкой развития плода. С помощью современных молекулярно-генетических методов установлено, что в большинстве случаев он сочетается с унипарентной дисомией, при которой у плода обе гомологичные хромосомы наследуются от одного родителя. Клиническими проявлениями последней могут быть синдромы Прадера–Вилли и Ангельмана (хромосома 15) и синдром Беквита–Видемана (хромосома 11), витальный прогноз которых неблагоприятен, а также различные аутосомно-рецессивные заболевания, возникающие вследствие гомозиготизации хромосомного материала.
При обследовании женщин с высоким риском хромосомной патологии не рекомендуется полностью полагаться только на результаты кариотипирования цитотрофобласта и клеток ворсин хориона, имеющих экстраэмбриональное происхождение. Более надежными являются результаты цитогенетического анализа клеток амниотической жидкости и лимфоцитов. Взятие крови плода при пункции сосудов пуповины под контролем ультразвука, кордоцентез, который обычно проводят не ранее 20-й недели беременности, вызывает осложнения в среднем в 3,2–6,5% случаев. Частота фетальных потерь в течение 2 нед от момента его выполнения зависит от того, по каким показаниям он проводился, и составляет 1, 7 и 14% соответственно, при нормальном развитии плода, структурных аномалиях и задержке развития плода. Кроме того, риск перинатальной смертности после кордоцентеза во многом определяется квалификацией и опытом хирурга. Во Франции доля кордоцентезов среди всех инвазивных вмешательств составляет 23%, а в США в ряде центров его назначают большинству женщин с УЗИ-маркерами хромосомных заболеваний .Современные методы ДНК-анализа.
В последние годы для ПД все чаще применяются молекулярно-генетические методы, наиболее важным из которых является FISH (fluorescence in situ hybridization). Он основан на использовании в реакции гибридизации in situ различных ДНК-проб (клонированных фрагментов ДНК человека), которые в фиксированных препаратах связываются со строго определенными (комплементарными им) районами хромосом. FISH превосходит классические методы кариотипирования по разрешающей способности и экономичности и в меньшей степени зависит от уровня подготовки цитогенетика. С его помощью возможно определение числа хромосом в ядрах амниоцитов, цитотрофобласта, лимфоцитов и любых других клеток в течение 24–48 ч. Обследование десятков тысяч пациенток показало, что эффективность интерфазного FISH-анализа некультивируемых амниоцитов превышает 80%. При одновременном применении центромероспецифичных зондов, взаимодействующих с хромосомами 13, 18, 21, X и Y, выявляется 90–95% всех фетальных ХА. Поэтому данный вариант FISH имеет гораздо более высокую информативность, чем другие скрининговые методы. Особую ценность он приобретает при проведении пренатальной экспресс-диагностики с целью уточнения степени мозаицизма неделящихся клетках ворсин хориона и амниотической жидкости. Некоторые авторы при постановке FISH-мeтoдa для выявления трисомий в амниоцитах отдают предпочтение теломерным ДНК-пробам космидных клонов.
Центромероспецифичные зонды не всегда пригодны для обнаружения несбалансированных робертсоновских транслокаций, доля которых среди всех трисомий составляет около 5%, и многих других структурных ХА. Поэтому в ПД для FISH-вepификaции транслокаций часто используются коммерческие хромосомоспецифичные ДНК-библиотеки (т.е. смесь уникальных последовательностей ДНК, покрывающих всю длину хромосомы – painting probes). Этот вариант позволяет также устанавливать семейный характер сверхкомплектных маркерных хромосом, который наблюдается в 40% случаев, что нередко играет решающую роль в выборе тактики ведения беременности. Показано, в частности, что обнаружение у плода дополнительной хромосомы, идентичной по молекулярному составу маркерной хромосоме одного из фенотипически здоровых родителей, свидетельствует о незначительном риске рождения ребенка с аномалиями развития.Частота последних при наличии несателлитных фетальных хромосом, возникших de novo, может достигать 27%, а для маркеров, содержащих короткие плечи акроцентрических хромосом, она составляет около 8%. Для успешного анализа многих ХА плода, например, микроделеций, инсерций или инверсий, часто необходим микро-FISH-метод (reverse chromosome painting). Суть его состоит в том, что с помощью микроманипулятора или проточной сортировки изолируют аберрантные хромосомы, их ДНК амплифицирует, продукты полимеразной цепной реакции (ПЦР) метят и исподьзуют в гибридизации с нормальными метафазными хромосомами. Таким образом удается идентифицировать участки, присутствующие на аномальной хромосоме, и выявить ее делетированные районы. С помощью “обратного” окрашивания можно определить, является ли данная фетальная транслокация, наследуемая от одного из родителей, сбалансированной, что чрезвычайно важно для решения вопроса о прерывании беременности. Микро-FISH-анализ (в комбинации с микродиссекцией хромосом и ПЦР) культивируемых клеток амниотической жидкости был успешно использован для идентификации возникших de novo маркерных ХА: небольшой сверхкомплектной сателлитной хромосомы, изохромосомы i(9p) и кольцевой мини-хромосомы r(1). Первая из них образовалась в результате слияния центромерных гетерохроматических районов хромосом 14 и 22, поэтому какие-либо ее фенотипические проявления до и после рождения ребенка обнаружить не удалось. В двух других случаях наблюдались множественные аномалии и пороки развития плодов и ранняя постнатальная гибель новорожденных, вследствие присутствия в маркерных хромосомах эухроматических участков, содержащих структурные гены.
Таким образом, FISH-анализ в комплексе с методами классической цитогенетики резко повышает эффективность ПД практически всех видов хромосомопатий.
Быстрым и экономичным скрининговым методом определения анеуплоидии и триплоидии плода является тест, основанный на количественной флюоресцентной мультиплексной ПЦР. При его постановке амплифицируются небольшие повторяющиеся последовательности ДНК, маркирующие хромосомы 21, 18, 13, X и др., а последующий количественный флюоресцентный анализ ПЦР-продуктов позволяет дифференцировать образцы с нормальным и патологическим кариотипом. Продолжительность ПЦР-анализа обычно составляет несколько часов. В.Perti и соавт. при исследовании 85 образцов ДНК, выделенной из клеток амниотической жидкости плодов, в 82 удалось достичь значительного совпадения с результатами стандартного цитогенетического анализа. Они обнаружили 20 плодов с СД, а также плоды с триплоидией (2 случая), синдромом Эдвардса (2 случая) и синдромом Патау (1 случай). Лишь в 3 наблюдениях при амплификации единственного маркерного повтора хромосомы 13 имела место гипердиагностика синдрома Патау, причем у льзуют затем как зонды сплошной ок одного из плодов она объяснялась дупликацией хромосомного материала.
С помощью количественного ПЦР-метода возможно обнаружение нуклеотидной последовательности, соответствующей SRY-гену хромосомы Y, в крови женщин, беременных мужским плодом, после 7-й недели гестационного периода. Положительный результат удается получить при наличии 1 мужской фетальной клетки среди 12 800 клеток матери.
ПЦР-тест весьма эффективен при анализе малого количества генетического материала, полученного, например, при раннем амниоцентезе, выделении фетальных клеток, циркулирующих в материнском кровотоке, или трансцервикальном лаваже. Последний обычно проводится на 7–9-й неделе беременности, и трофобластические клетки, находящиеся в смывах слизи из цервикального канала или нижнего отдела полости матки, используют для диагностики трисомий плода и для определения его пола. Сообщается также об успешном выявлении СД плода с помощью FISH-анализа лаважных клеток.
Показана принципиальная возможность определения кариотипа по клеткам плода, циркулирующим в материнском кровотоке. Несмотря на то, что даже в конце беременности на 1 эритробласт плода приходится 10 000 материнских ядросодержащих клеток, с помощью современных иммунофлюоресцентных или магнитных модулей для проточной сортировки клеток (FACS, MACS и др.) удается получить обогащенную фракцию фетальных клеток, в которой их содержание может достигать 10%. Для выделения эритробластов используются меченные флюорохромами или железными частицами моноклональные антитела к белкам, присутствующим на их мембранах – рецептору трансферрина (CD71), гликофорину А и рецептору тромбоспондина. Предварительно клетки крови центрифугируют в тройном градиенте плотности, и в ряде случаев, проводят с помощью ядерных красителей селекцию клеток, содержащих ядра. Рекомендуется также негативная сортировка СD45-позитивных лимфоцитов. Помимо клеток эритроидного ряда в крови матери находятся фетальные раски для лимфоциты и гранулоциты, а также трофобластические клетки, но они оказались менее удобными объектами для цитогенетических исследований.

С помощью интерфазного FISH-анализа флотирующих в крови матери клеток были идентифицированы фетальные трисомии по хромосомам 21, 18, X, а также синдром Клайнфельтера (47,XXY). Так, исследование 42 312 ядер клеток, изолированных из кровотока 40 женщин, направленных для проведения ПД в различные сроки беременности (10–27 нед), позволил в 2 наблюдениях обнаружить СД плода, который в дальнейшем был подтвержден с помощью амниоцентеза. Пол был правильно определен у всех плодов с кариотипом 46,ХХ и у 5 из 16 плодов с мужским кариотипом. В 1 случае у плода с синдромом Эдвардса аберрантные клетки среди 640 отсортированных клеток выявить не удалось. В остальных наблюдениях, по данным FISH и последующего кариотипирования амниоцитов, хромосомная патология плода отсутствовала. В большинстве публикаций сообщается лишь об единичных случаях ПД анеуплоидий. Их анализ свидетельствует о том, что данный тест имеет пока более низкую чувствительность и специфичность по сравнению с аналогичными показателями инвазивных методик. Главной проблемой остается низкая концентрация фетальных клеток в обогащенной фракции, причем значительная их часть не вступает в реакцию гибридизации с ДНК-зондами.

Поэтому приходится проводить анализ ограниченного количества клеток, что увеличивает вероятность ошибки. Определенные трудности возникали даже при определении пола плода, тогда как при исследовании ДНК отсортированных клеток с помощью ПЦР-амплификации Y-специфических последовательностей пол плодов на 8–19-й неделе беременности был идентифицирован в 94–100%. Таким образом, этот подход остается пока экспериментальным и по информативности не превосходит существующие скрининговые тесты. Его использованию в клинической практике в качестве скрининга анеуплоидий препятствуют значительная трудоемкость и высокая стоимость сортировки фетальных клеток.
 

В настоящее время в связи с развитием методов экстракорпорального оплодотворения (ЭКО) широкое распространение получает преимплантационная диагностика хромосомных заболеваний. Преимущество данного подхода составляет снижение терапевтических абортов, поскольку хромосомные и генные нарушения определяются на уровне ооцитов-эмбрионов и возможно перенести в полость матки неповрежденные эмбрионы. Полярное тельце ооцита или бластомер эмбриона (4–8-клеточная стадия) предварительно изолируется с помощью микроманипулятора, а затем ДНК плода исследуется с помощью FISH или ПЦР. Преимплантационная диагностика особенно показана женщинам старше 35 лет, треть ооцитов которых имеет хромосомную патологию [52]. Наиболее надежным является анализ полярных телец методом FISH, в котором используются ДНК-зонды для одновременного определения хромосом X, Y, 18, 13 и 21. Для 440 ооцитов без признаков моносомии и трисомии, отобранных с помощью FISH из 648 ооцитов, было достигнуто нормальное оплодотворение, дробление и перенос в 122 циклах ЭКО, причем беременность наступила в 18 случаях, из которых 6 завершилось нормальными родами [52]. Частота ложноотрицательных результатов вследствие недостаточной эффективности FISH paвнялacь 18,1%. Значительную часть пациентов среди тех, которые нуждаются во вспомогательных репродуктивных технологиях, составляют индивидуумы со сбалансированными транслокациями. При проведении в этой группе риска FISH-анализа 625 бластомеров, изолированных на 3-й день развития, в 33 случаях были обнаружены различные ХА.
Мозаицизм эмбрионов и контаминация ДНК спермы могут вызывать ряд проблем при определении пола и выявлении анеуплоидий с помощью ПЦР-анализа. Так, эмбрионы, ДНК которых по данным ПЦР не содержала специфичных для хромосомы Y последовательностей нуклеотидов, по данным FISH-анализа имели следующие кариотипы: 45,Х, 46,XX / 46,XY или 46,XY / 47,XYY. Показано, что в нормально развивающихся эмбрионах мозаицизм и полиплоидии наблюдаются соответственно в 3 и 3,6%, тогда как у отстающих и блокированных эмбрионов эти ХА встречаются во много раз чаще. Совершенно ясно, что у некоторых пациентов цитогенетический анализ одного бластомера не дает полную характеристику всего эмбриона, поэтому во всех случаях наступления беременности после проведения преимплантационной диагностики следует выполнять инвазивную ПД с амниоцентезом или хорионбиопсией.
Таким образом, отмечается дальнейшее интенсивное развитие базовых методов дородовой диагностики ХА: биохимического и ультразвукового оит в том, что он исключает прове скрининга, инвазивных методик для получения плодового материала, цитогенетического исследования метафазных препаратов хромосом. Активное применение методов ДНК-анализа, ПЦР и FISH обеспечивает прогресс традиционных направлений ПД и способствует практическому внедрению принципиально новых подходов – определения кариотипа по клеткам плода, циркулирующим в кровотоке матери, преимплантационной диагностики и других.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение:

 

Развитие пренатальной диагностики способствует снижению рождаемости детей с хромосомными аномалиями развития, снижению инвализации населения, а значит и снижению уровня сирот, имеющих хромосомные аномалии.

Также, благодаря этим методам, появилась возможность прогнозировать состояние здоровья эмбриона. Несомненно, это большой шаг в современной медицине, который надо развивать.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список используемой литературы:
 


1. Залетаев Д.В. Хромосомная патология у детей с олигофренией и множественными признаками дизморфогенеза. Автореф. дисс. ... канд. биол. наук. М 1985; 24.
2. Кулешов Н.П. Частота возникновения и судьба хромосомных аномалий в популяции человека. Автореф. дис. ... д-ра. мед. наук. М 1979; 45.
3. Гинзбург Б.Г. О частоте синдрома Дауна. Росс вестник перин пед 1998; 6: 13–14.
4. Hiкiтчина Т.В., Бариляк I.P., Гордiенко И.Ю. Пренатальна цитогенетична дiагностика хромосомноi патологиi плоду у жiнок групи високого ризику. Цитология и генетика 1996; 30: 5: 22–26.
5. Кузнецова Т.В., Баранов А.Н., Киселева Н.В. и др. Пренатальная диагностика хромосомных болезней: десятилетний опыт. Вестник Российской Ассоциации акушеров-гинекологов 1997; 3: 95–99.
6. Снайдерс Р.Дж.М., Николаидес К.Х. Ультразвуковые маркеры хромосомных дефектов плода. Пер с англ. Медведева М.В., Михайлова А.В. М: Видар 1997; 192.
7. Salonen R., Turpeinen U., Kurki L. et al. Maternal serum screening for Down's syndrome on population basis. Acta Obstet Gynecol Scand 1997; 76: 817–821.



Информация о работе Пренатальная диагностика хромосомных заболеваний