Автор: Пользователь скрыл имя, 17 Декабря 2011 в 00:50, курсовая работа
В данной курсовой работе, выдвигая гипотезу, что приемы графического моделирования влияют на скорость формирования умения решать задачи, я постараюсь сделать следующее:
Ш Рассмотреть известные, но мало применяемые на практике графические модели, включить их в практическую работу с детьми;
Ш Овладеть приемами диагностики уровня сформированности умения у детей младшего школьного возраста решать задачи на движение;
Ш Систематизировать приемы схематического моделирования, учитывая опыт учителей начальной школы.
ВВЕДЕНИЕ 3
ГЛАВА 1. ОБЩИЕ ВОПРОСЫ МЕТОДИКИ
НАЧАЛЬНОГО ОБУЧЕНИЯ МАТЕМАТИКЕ 5
1.1. Арифметическая задача. Виды арифметических задач 5
1.2. Роль решения задач 7
1.3. Общие вопросы методики обучения решению простых задач 10
1.3.1. Подготовительная работа к решению задач 11
1.3.2. Классификация простых задач 12
ГЛАВА 2. Моделирование как средство
формирования умения решать задачи 16
2.1. Виды моделирования. Графическое моделирование
как основное средство 16
2.2. Обучение решению задач на движение с помощью
схематического моделирования 22
ЗАКЛЮЧЕНИЕ 27
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 31
1) подготовительную работу к решению задач;
2) ознакомление с решением задач;
3) закрепление умения решать задачи.
Рассмотрим подробнее методику работы на каждой из названных ступеней.
На этой первой ступени обучения решению задач того или другого вида должна быть создана у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.
До решения
простых задач ученики
1) Связи операций
над множествами с
2) Связи отношений «больше» и «меньше» (па несколько единиц и в несколько раз) с арифметическими действиями, т. е. конкретный смысл выражений «больше на . . . », «больше в … раз», «меньше на . . . », «меньше в . . . раз». Например, больше на 2, это столько же. и еще 2, значит, чтобы получить на 2 больше, чем 5), надо к 5 прибавить 2.
3) Связи между компонентами и результатами арифметических действий, т. е. правила нахождения одного из компонентов арифметических действий по известным результату и другому компоненту. Например, если известна сумма и одно из слагаемых, то другое слагаемое находится действием вычитания: из суммы вычитают известное слагаемое.
4) Связи между
данными величинами, находящимися
в прямо или обратно
Кроме того, при ознакомлении с решением первых простых задач ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).
Простые задачи можно разделить на группы в соответствии с теми арифметическими действиями, которыми они решаются.
Однако в методическом отношении удобнее другая классификация: деление задач на группы в зависимости от тех понятий, которые формируются при их решении. Можно выделить три такие группы. Охарактеризуем каждую из них.
К первой группе относятся простые задачи, при решении которых дети усваивают конкретный смысл каждого из арифметических действий.
В этой группе пять задач:
1) Нахождение
суммы двух чисел. Девочка
2) Нахождение остатка. Было 6 яблок. Два яблока съели. Сколько осталось?
3) Нахождение
суммы одинаковых слагаемых (
В живом уголке жили кролики в трех клетках, по 2 кролика в каждой. Сколько всего кроликов в живом уголке?
4) Деление на
равные части. У двух
5) Деление по содержанию.
Каждая бригада школьников посадила по 12 деревьев, а всего они посадили 48 деревьев. Сколько бригад выполняли эту работу?
Ко второй группе относятся простые задачи, при решении которых учащиеся усваивают связь между компонентами и результатами арифметических действий. К ним относятся задачи на нахождение неизвестных компонентов.
1) Нахождение
первого слагаемого по
Девочка вымыла несколько глубоких тарелок и 2 мелкие, а всего она вымыла 5 тарелок. Сколько глубоких тарелок вымыла девочка?
2) Нахождение
второго слагаемого по
Девочка вымыла 3 глубокие тарелки и несколько мелких. Всего она вымыла 5 тарелок. Сколько мелких тарелок вымыла девочка?
3) Нахождение
уменьшаемого по известным
4) Нахождение
вычитаемого по известным
Дети сделали 6 скворечников. Когда несколько скворечников они повесили на дерево, у них еще осталось 4 скворечника. Сколько скворечников дети повесили на дерево?
5) Нахождение
первого множителя по
Неизвестное число умножили на 8 и получили 32. Найти неизвестное число.
6) Нахождение второго множителя по известным произведению и первому множителю.
9 умножили на неизвестное число и получили 27. Найти неизвестное число.
7) Нахождение
делимого по известным
Неизвестное число разделили на 9 и получили 4. Найти неизвестное число.
8) Нахождение
делителя по известным
24 разделили
на неизвестное число и
К третьей группе относятся задачи, при решении которых раскрываются понятия разности и кратного отношения. К ним относятся простые задачи, связанные с понятием разности (6 видов), и простые задачи, связанные с понятием кратного отношения (6 видов).
1) Разностное
сравнение чисел или
Один дом построили за 10 недель, а другой за 8 недель. На сколько недель больше затратили на строительство первого дома?
2) Разностное
сравнение чисел или
Один дом построили за 10 недель, а другой за 8. На сколько недель меньше затратили на строительство второго дома?
3) Увеличение числа на несколько единиц (прямая форма). Один дом построили за 8 недель, а на строительство второго дома затратили на 2 недели больше. Сколько недель затратили на строительство второго дома?
4) Увеличение числа на несколько единиц (косвенная форма).
На строительство одного дома затратили 8 недель, это на 2 недели меньше, чем затрачено на строительство второго дома. Сколько недель затратили на строительство второго дома?
5) Уменьшение числа на несколько единиц (прямая форма).
На строительство одного дома затратили 10 недель, а другой построили на 2 недели быстрее. Сколько недель строили второй дом?
6) Уменьшение числа на несколько единиц (косвенная форма).
На строительство одного дома затратили 10 недель, это на 2 недели больше, чем затрачено на строительство второго дома. Сколько недель строили второй дом?
Задачи, связанные с понятием кратного отношения.(не приводя примеры)
1) Кратное сравнение чисел или нахождение кратного отношения двух чисел (I вид). (Во сколько раз боль-ше?)
2) Кратное сравнение чисел или нахождение кратного от-ношения двух чисел (II вид). (Во сколько раз мень-ше?)
3) Увеличение числа в несколько раз (прямая форма).
4) Увеличение
числа в несколько раз (
5) Уменьшение числа в несколько раз (прямая форма).
6) Уменьшение
числа в несколько раз (
Здесь названы только основные виды простых задач. Однако они не исчерпывают всего многообразия задач.
Порядок введения
простых задач подчиняется
Объекты задачи и отношения между ними составляют условие задачи. Напри-мер, в задаче: «Лида нарисовала 5 домиков, а Вова - на 4 домика больше. Сколько домиков нарисовал Вова?» -- объектами являются:
1) количество домиков, нарисованных Лидой (это известный объект в задаче);
2) количество
домиков, нарисованных Вовой (
Связывает объекты отношение «больше на».
Структуру задачи можно представить с помощью различных моделей. Но преж-де, чем сделать это, уточним некоторые вопросы, связанные с классификацией моделей и терминологией.
Все модели принято делить на схема-тизированные и знаковые.
В свою очередь, схематизированные модели бы-вают вещественными (они обеспечивают физическое действие с предметами) и графическими (они обеспечивают графи-ческое действие).
К графическим моде-лям относят рисунок, условный рисунок, чертеж, схематический чертеж (или схему).
Знаковая модель задачи может выпол-няться как на естественном языке (т. е. имеет словесную форму), так и на математическом (т. е. используются сим-волы).
Например, знаковая модель рассматри-ваемой задачи, выполненная на естест-венном языке,-- это общеизвестная крат-кая запись:
Знаковая модель данной задачи, вы-полненная на математическом языке, имеет вид выражения 5+4.
Уровень овладения моделированием определяет успех решающего. Поэтому обучение моделированию занимает особое и главное место в формировании умения решать задачи.
Лавриненко Т.А. предлагает следующие приемы предметного моделирования простых задач на сложение и вычитание: с дочислового периода начинать выполнять практические упражнения по всем видам задач, объясняя полученный результат и выборочно зарисовывать в тетради.
Положите три красных кружка, а ниже положите 5 синих кружков. Сколько всего кружков вы положили?
3 | 8 | ||
5 | |||
Информация о работе Схематическое моделирование при обучении решению задач на движение