Автор: Пользователь скрыл имя, 23 Апреля 2012 в 17:52, научная работа
Засвоєння поняття нерівностей з модулями потрібне не лише для оволодіння алгоритмами арифметичних дій з додатними та від’ємними числами. Воно сприяє формуванню в учнів різних видів мислення при використанні алгебраїчного змісту модуля, геометричної інтерпретації модуля, при пошуку раціональних способів розв’язування. Саме для перевірки наявності відповідних типів мислення абітурієнтів до завдань вступних іспитів у вищих навчальних закладах, як правило, включають задачі на нерівності з модулями.
Вступ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Означення модуля. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Найпростіші лінійні нерівності, що містять модуль. . . . . . . . . . . . . . . . 6
Розв’язання нерівностей, що містять модуль під знаком модуля. . . . . .9
Нерівності, що містять суму модулів. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Нерівності, що містять різницю модулів. . . . . . . . . . . . . . . . . . . . . . . . .14
Квадратні нерівності. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Висновки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
9. Література. . . . . . . . . . .