Автор: Пользователь скрыл имя, 25 Января 2012 в 22:49, реферат
В последние годы в прикладной математике большое внимание уделяется новому классу задач оптимизации, заключающихся в нахождении в заданной области точек наибольшего или наименьшего значения некоторой функции, зависящей от большого числа переменных. Это так называемые задачи математического программирования, возникающие в самых разнообразных областях человеческой деятельности и прежде всего в экономических исследованиях, в практике планирования и организации производства.
Введение
Линейное программирование
Симплекс метод
Постановка задачи
Разработка алгоритма
Решение задачи
Программная реализация на языке Delphi
Приложение
Заключение
Список используемой литературы
Постановка задачи
На звероферме могут выращиваться норки, выдры и нутрии. Для обеспечения нормальных условий их выращивания используется 3 вида кормов. Количество корма каждого вида, которое должны получать зверьки в среднем приведено в таблице:
Количество единиц корма, которое ежедневно должны получать | |||||
Вид корма | Норка | Выдра | Нутрия | Общее количество корма | |
I | 4 | 2 | 5 | 190 | |
II | 5 | 3 | 4 | 320 | |
III | 7 | 9 | 5 | 454 | |
Прибыль от реализации одной шкурки, руб. | 150 | 320 | 350 | ||
В таблице указано общее количество корма каждого вида, которое может быть использовано зверофермой, и прибыль от реализации одной шкурки зверька.
Определить, сколько зверьков каждого вида следует выращивать на звероферме, чтобы прибыль от реализации шкурок была максимальной.
Алгоритм решения задач симплекс - методом
1) Поставленная описательная задача переводится в математическую форму (целевая функция и ограничения).
2) Полученное
математическое описание
3) Каноническую форму приводят к матричному виду.
4) Ищут первое
допустимое решение. Для этого
матрица должна быть
5) Если матрица
не является правильной, то ее
нужно сделать таковой с
6) Строят последовательность
матриц. Нужно определить ведущий
столбец, ведущую строку и
Признаком оптимальности решения является наличие в векторе решений только отрицательных или нулевых коэффициентов при всех ограничениях.
Ответ записывается следующим образом:
- Каждому отрицательному
коэффициенту в векторе
- Для каждого
нулевого коэффициента в
- Фиктивные переменные в ответе не учитываются.
Ведущим может быть назначен любой столбец, удовлетворяющий одному из условий:
1) Первый столбец,
содержащий положительный
2) Столбец, содержащий
наибольший положительный
3) Если столбец удовлетворяет условию max(Cj min bj/aij) при решении на max, и min(Cj min bj/aij) при решении задач на min.
Cj - коэффициент целевой функции в столбце j, aij - коэффициент в столбце j и строке i.
Решение задачи
Определим максимальное значение целевой функции F(X) = 3500 x1 +3200 x2 +1500 x3 при следующих условиях ограничений.
4 x1 + 2 x2 + 5 x3 <=190
5 x1 + 3 x2 + 4 x3 <=320
7 x1 + 9 x2 + 5 x3 <=454
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных.
4x1 + 2x2 + 5x3 + 1x4 + 0x5 + 0x6 = 190
5x1 + 3x2 + 4x3 + 0x4 + 1x5 + 0x6 = 320
7x1 + 9x2 + 5x3 + 0x4 + 0x5 + 1x6 = 454
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:
Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.
Решим систему уравнений относительно базисных переменных:
x4 , x5 , x6
Полагая, что свободные переменные равны 0, получим первый опорный план: X1 = (0,0,0,190,320,454)
Поскольку задача решается на максимум, то ведущий столбец выбирают по максимальному отрицательному числу и индексной строке. Все преобразования проводят до тех пор, пока не получатся в индексной строке положительные элементы.
Переходим к
основному алгоритму симплекс-
X1 | X2 | X3 | X4 | X5 | X6 | св. чл. | |
4 | 2 | 5 | 1 | 0 | 0 | 190 | |
5 | 3 | 4 | 0 | 1 | 0 | 320 | |
7 | 9 | 5 | 0 | 0 | 1 | 454 | |
-3500 | -3200 | -1500 | 0 | 0 | 0 | 0 | |
Итерация №0
Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты
В качестве ведущего выберем столбец, соответствующий переменной x1, так как наибольший коэффициент по модулю.
Вычислим значения D i по строкам как частное от деления
и из них выберем наименьшее:
Следовательно, 1-ая строка является ведущей
Разрешающий элемент равен 4 и находится на пересечении ведущего столбца и ведущей строки
Формируем следующую часть симплексной таблицы.
Вместо переменной x в план 1 войдет переменная x1
Строка, соответствующая переменной x1 в плане 1, получена в результате деления всех элементов строки x4 плана 0 на разрешающий элемент РЭ=4
На месте разрешающего элемента в плане 1 получаем 1.
В остальных клетках столбца x1 плана 1 записываем нули.
Таким образом, в новом плане 1 заполнены строка x1 и столбец x1 .
Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.
Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ - (А*В)/РЭ
СТЭ - элемент старого плана, РЭ - разрешающий элемент (4), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:
X1 | X2 | X3 | X4 | X5 | X6 | св. чл. | |
1 | 1/2 | 5/4 | 1/4 | 0 | 0 | 190/4 | |
5 | 3 | 4 | 0 | 1 | 0 | 320 | |
7 | 9 | 5 | 0 | 0 | 1 | 454 | |
3500 | 3200 | 1500 | 0 | 0 | 0 | ||
X1 | X2 | X3 | X4 | X5 | X6 | св. чл. | |
1 | 1/2 | 5/4 | 1/4 | 0 | 0 | 190/4 | |
0 | 1/2 | -9/4 | -5/4 | 1 | 0 | 165/2 | |
0 | 11/2 | -15/4 | -7/4 | 0 | 1 | 243/2 | |
0 | -1450 | 2875 | 875 | 0 | 0 | ||
Итерация №1
Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты
В качестве ведущего выберем столбец, соответствующий переменной x2, так как наибольший коэффициент по модулю.
Вычислим значения D i по строкам как частное от деления и из них выберем наименьшее:
Следовательно, 3-ая строка является ведущей
Разрешающий элемент равен 5.5 и находится на пересечении ведущего столбца и ведущей строки
Формируем следующую часть симплексной таблицы.
Вместо переменной x в план 2 войдет переменная x2
Строка, соответствующая переменной x2 в плане 2, получена в результате деления всех элементов строки x6 плана 1 на разрешающий элемент РЭ=5.5
На месте разрешающего элемента в плане 2 получаем 1.
В остальных клетках столбца x2 плана 2 записываем нули.
Таким образом, в новом плане 2 заполнены строка x2 и столбец x2 .
Все остальные элементы нового плана 2, включая элементы индексной строки, определяются по правилу прямоугольника.