Автор: Пользователь скрыл имя, 27 Декабря 2010 в 15:10, реферат
Совокупность всех первообразных для функции f(x) называется неопределенным интегралом от функции f(x).
Обозначения: ∫ f(x) dx (читается так: «интеграл эф от икс дэ икс»)
Таким образом, если F(x)- какая-нибудь первообразная для функции f(x), то
∫ f(x)dx= F(x)+ С
(в правой части последнего равенства более правильно было бы написать {F(x)+С}, поскольку речь идет о множестве всех первообразных, но фигурные скобки, обозначающие множество, обычно не пишут).
Следовательно, производные от х от право й и левой частей равенства (2) равны, что и требовалось доказать.
Функцию следует выбирать так, чтобы можно было вычислить неопределенный интеграл, стоящий в правой части равенства (2).
Замечание. При интегрировании иногда целесообразнее подбирать замену переменной не в виде , а в виде Проиллюстрируем это на примере. Пусть нужно вычислить интеграл, имеющий вид
.
Здесь
удобно положить
,
тогда
.
Приведем несколько примеров на интегрирование с помощью замены переменных.
Пример 1.
Сделаем подстановку t=sin x; тогда dt= cosx dx и, следовательно,
Пример 2.
Полагаем t=1+x2 ;тогда dt=2xdx и
Пример 3.
Полагаем ; тогда dx=a dt,
Пример 4. . Полагаем ; тогда dx=a dt,
(предполагается, что a>0).
В примерах 3 и 4 выделены формулы ,приведенные в таблице интегралов под номерами 11′и 13′(см. выше,пункт №2).
Пример 5. Полагаем t=lnx; тогда
.
Пример 6. ? Полагаем ;тогда dt= 2xdx,
Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким -либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл. По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения. Этому посвящены большая часть настоящего пункта.
5)Интегрирование по частям
Пусть u и v две дифференцируемые функции от х. Тогда, как известно, дифференциал произведения uv вычисляется по следующей формуле :d(uv)=udv+vdu.Отсюда, интегрируя, получаем или
.
Последняя формула называется формула интегрирования по частям. Эта формула чаще всего применяется к интегрированию выражений которые можно так представить в виде произведения двух сомножителей u и dv, чтобы отыскать функцию v по её дифференциалу dv и вычисления интеграла составляли в совокупности задачу более простую, чем непосредственное вычисление интеграла . Умение разбивать разумным образом данное подынтегральное выражение на множители u и dv вырабатывается в процессе решения задачи , и мы покажем на ряде примеров, как это делается.
Пример 1. ? Положим u=x,dv=sinxdx;тогда du=dx,v= -cosx.Следовательно,
.
Замечание. При определении функции v по дифференциалу dv мы можем брать любую произвольную постоянную, так как в конечный результат она не входит (что легко проверить, подставив в равенство(1) вместо v выражение v+C). Поэтому удобно считать эту постоянную равной нулю.
Правило интегрирования по частям применяется во многих случаях. Так, например, интегралы вида
некоторые интегралы, содержащие обратные тригонометрические функции, вычисляются с помощью интегрирования по частям.
Пример 2. Требуется вычислить . Положим u= arctg x, dv=dx;тогда . Следовательно,
Пример 3. Требуется вычислить . Положим тогда
.
Последний интеграл снова интегрируем по частям, полагая
Тогда
. Окончательно будем иметь
.
Рациональные дроби. Простейшие рациональные дроби и их интегрирование
Как мы увидим ниже, далеко не всякая элементарная функция имеет интеграл, выражающийся в элементарных функциях. Поэтому очень важно выделить такие классы функций , интегралы которых выражаются через элементарные функции. Простейшим из этих классов является класс рациональных функций.
Всякую рациональную функцию можно представить в виде рациональной дроби, т. е. в виде отношения двух многочленов:
Не ограничивая общности рассуждения, будем предполагать, что эти многочлены не имеют общих корней.
Если степень числителя ниже степени знаменателя, то дробь называется правильной, в противном случае дробь называется неправильной.
Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), можно представить данную дробь в виде суммы многочлена и некоторой правильной дроби:
;
здесь М(х)-многочлен, а - правильная дробь.
Пример. Пусть дана неправильная рациональная дробь
Разделив числитель на знаменатель (по правилу деления многочленов), получим
.
Так как интегрирование многочленов не представляет затруднений, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.
Определение. Правильные рациональные дроби вида
(1).
(2). (k-целое положительное число
(3) (корни знаменателя комплексные, т.е. ).
(4) (k-целое положительное число ;корни знаменателя комплексные), называются простейшими дробями (1),(2),(3) и (4) типов.
Интегрирование простейших дробей типа (1),(2) и (3) не составляет большой трудности, поэтому мы приведем их интегрирование без каких-либо дополнительных пояснений:
(1)
(2)
(3)
=
Более сложных вычислений требует интегрирование простейших дробей (4) типа. Пусть нам дан интеграл такого типа:
(4)
Произведем преобразования:
Первый интеграл берется подстановкой :
Второй интеграл- обозначим его через Ik-запишем в виде
,
полагая
(по
предположению корни
.
Преобразуем интеграл:
Интегрируя по частям ,будем иметь
.
Подставляя это выражение в равенство (1), получим
=
= .
В правой части содержится интеграл того же типа, что , но показатель степени знаменателя подынтегральной функции на единицу ниже ;таким образом, мы выразили через Продолжая идти тем же путем, дойдем до известного интеграла:
Подставляя затем всюду вместо t и m их значения, получим выражение интеграла (4) через х и заданные числа А, B, p,q.
Интегрирование рациональных дробей
Пусть требуется вычислить интеграл от рациональной дроби Если данная дробь неправильная, то мы представляем ее в виде суммы многочлена M(x) и правильной рациональной дроби . Последнюю же представляем по формуле в виде суммы простейших дробей. Таким образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.
Вид простейших дробей определяется корнями знаменателя f(x). Здесь возможны следующие случаи.
1.Случай.
Корни знаменателя действительны и различны, т. е.
F(x)=(x-a)(x-b)…(x-d).
В этом случае дробь разлагается на простейшие дроби 1типа:
и тогда
2. Случай.
Корни знаменателя действительные, причем некоторые из них кратные:
В этом случае дробь разлагается на простейшие дроби 1и 2 типов.
Пример 1.
3. Случай.
Среди корней знаменателя есть комплексные неповторяющиеся(т.е. различные):
В этом случае дробь разлагается на простейшие дроби 1,2 и 3 типов.
Пример 2.Требуется вычислить интеграл
.Разложим подынтегральную
Следовательно,
.
Полагая х=1, получим 1=2С, С= ½; полагая х=0, получим 0= -B+C, B=1/2.
Приравнивая коэффициенты при , получим 0=А+С, откуда А= - ½. Таким образом ,
4. Случай.
Среди корней знаменателя есть комплексные кратные:
В этом случае разложение дроби будет содержать и простейшие дроби 4 типа.
Пример 3. Требуется вычислить интеграл
.
Решение. Разлагаем дробь на простейшие:
откуда
Комбинируя указанные выше методы определения коэффициентов, находим А=1, В= - 1, С=0, D=0, Е=1.
Таким образом, получаем
Из всего изложенного следует, что интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:
через логарифмы- в случаях простейших дробей 1 типа;
через рациональные функции- в случае простейших дробей 2 типа
через логарифмы и арктангенсы- в случае простейших дробей 3 типа
через рациональные функции и арктангенсы- в случае простейших дробей 4 типа.
Интегралы от иррациональных функций
Не от всякой иррациональной функции интеграл выражается через элементарные функции. Сейчас мы рассмотрим те иррациональные функции, интегралы от которых с помощью подстановок приводятся к интегралам от рациональных функций и, следовательно, до конца интегрируются.