Автор: Пользователь скрыл имя, 14 Февраля 2012 в 16:13, курсовая работа
Системы дифференциальных уравнений, зависимости от своей структуры могут быть решены различными методами. Точное решение получить очень часто не удается, поэтому мы рассмотрим численные методы решения таких систем. Далее мы представим две группы методов: явные и неявные. Для решения систем ОДУ неявными методами придется решать системы нелинейных уравнений, поэтому придется ввести в рассмотрение группу методов решения систем нелинейных уравнений, которые в свою очередь будут представлены двумя методами. Далее следуют теоретические аспекты описанных методов, а затем будут представлены описания программ.
ВВЕДЕНИЕ
1. ОПИСАНИЕ МЕТОДОВ ИНТЕГРИРОВАНИЯ СИСТЕМ ОДУ
И ИХ ХАРАКТЕРИСТИКА
1.1. НЕЯВНЫЙ МЕТОД ЭЙЛЕРА И ЕГО ХАРАКТЕРИСТИКИ
1.2. НЕЯВНЫЕ МЕТОДЫ РУНГЕ-КУТТА
2. МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ САУ
2.1. МЕТОД НЬЮТОНА
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Символический этап.
Определяем мерность IX = 5
IX = 0 0 0 0 0
1-я строка матрицы JAT: 1 4
JA(1) = 1 4 JC(1) = 1 4
IX = 1 0 0 1 0
JA(4) = 1 4
IX(1) = 1 ? Да. JC(1) - без изменений
IX(4) = 1 ? Да. JC(1) - без изменений
2-я строка матрицы JAT: 2 5
JA(2) = 2 5 JC(2) = 2 5
IX = 1 2 0 1 2
JA(5) = 2 5 -> JC(2) - без изменений
....
4-я строка матрицы JAT: 1 3 4
JA(1) = 1 4 JC(4) = 1 4
IX = 4 2 2 4 2
JA(3) = 3 4
IX(3) = 4 ? Нет. JC(4) = 1 4 3
IX(4) = 4 ? Да. JC(4) - без изменений
....
в итоге получим:
IC = 1 3 5 7 10 12
JC = 1 4 2 5 3 4 1 4 3 2 5
Численный этап.
X = 0 0 0 0 0
1-я строка: JC(1) = 1 4
AN(1) = 3 5,
AA = 3
ANT(1) = 3 5
AA * ANT = 9 15
X = 9 0 0 15 0
AA = 5
ANT(1) = 3 5
AA * ANT = 15 25
X = 24 0 0 40 0
CN(1) = 24 40
....
Аналогично проделывая
IC: 1 3 5 7 10 12
JC: 1 4 2 5 3 4 1 4 3 2 5
CN: 24 40 20 35 80 0 55 22 66
16 144
Все вышеприведенные операции
были получены на компьютере
и результаты совпали для
нашего контрольного примера.
Описание программы на языке 2 C 0,
занимающейся этими операциями не приводится,
так как данная программа нами не разрабатывалась,
однако в приложении присутствует распечатка
этой программы.
4. ПРАКТИЧЕСКАЯ ЧАСТЬ.
ОПИСАНИЯ ПРОГРАММ.
4.1.
НЕЯВНЫЕ МЕТОДЫ.
Представлены группой из двух
похожих между собой программ,
реализующих соответственно
1NME.M
Головной модуль.
Входные и выходные данные отсутствуют.
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модуля:
Выполняет стандартные
1NMEF.M, NRG2.M
Вычислительные модули.
Входные данные:
T0, Tfinal - начальные и конечные моменты времени
X0 - вектор-столбец начальных значений.
H - начальный шаг
A - матрица, на диагонали которой стоят собственные числа линеаризованной системы ОДУ.
Выходные данные:
T - столбец времени
X - столбец решений
7D 0X - столбец ошибки
Пояснения к тексту модуля:
Стандартные действия: инициализация начальных значений , цикл
While T < Tfinal, вычисление по формулам, вывод промежуточных резуль-
татов,
формирование выходных значений массивов.
4.2.
МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ
САУ
Представлены группой из 4-х методов:
метод последовательных
Метод последовательных
1MMPP.M
Головной модуль.
Входные и выходные данные отсутствуют.
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модуля:
Очистка экрана, инициализация начальных значений, вызов вычисли-
тельного модуля MPP.M, вывод результатов в виде графиков.
1MPP.M
Вычислительный модуль.
Входные данные:
X0 - начальное приближение в виде вектора-строки
Fun1 - функция, возвращающая вычисленные левые части
Fun2 - функция, возвращающая матрицу Якоби в определенной точке.
E - допустимая ошибка.
Выходные данные:
Mout - номера итераций
Xout - приближения на каждой итерации
DXout - ошибка на каждой итерации
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модуля:
Аналогичен вышеприведенным
Методы Ньютона и Ньютона
1MNEWT.M
Головной модуль.
Входные и выходные данные отсутствуют.
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модуля:
Стандартный головной модуль - выполняет действия, аналогичные
предыдущим
головным модулям. Вызывает из себя NEWT.M
и NEWTD.M - модули реализующие методы Ньютона
и Ньютона дискретный, а также строит
их графики на одной координатной сетке.
1NEWT.M, NEWTD.M
Вычислительные модули.
Входные данные:
X0 - начальное приближение в виде вектора-строки
Fun1 - функция, возвращающая левые части
Fun2 - функция, вычисляющая матрицу Якоби (только для метода
E - допустимая ошибка
Выходные данные:
Mout - номера итераций
Xout - приближения на каждой итерации
DXout - ошибка на каждой итерации
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модулей:
Стандартные вычислительные
им действия.
Отличие их в том, что в первом
случае для вычисления матрицы Якоби
вызывается подпрограмма, а во втором
случае матрица Якоби вычисляется
внутри модуля.
Метод продолжения решения по параметру
1MMPRPP.M
Головной модуль.
Входные и выходные данные отсутствуют.
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модуля:
Стандартный головной модуль со всеми вытекающими отсюда последс-
твиями.
1MPRPP.M
Вычислительный модуль.
Входные данные:
Fun1 - имя подпрограммы, вычисляющей правые части
Fun2 - имя подпрограммы, вычисляющем матрицу Якоби
X0 - начальное приближение
dT - начальный шаг
Edop - допустимая ошибка
Trace - вывод на экран
Язык реализации: PC MathLab
Операционная система: MS-DOS 3.30 or higher
Пояснения к тексту модуля:
Стандартный вычислительный
вывод, формирование результата. Стоит отметить, что поскольку метод
имеет глобальную сходимость, то объем вычислений тут значительный, а
это значит, что при выполнении вычислений требуется значительное коли-
чество
свободной оперативной памяти.
ЗАКЛЮЧЕНИЕ
Были изучены основные численные методы для решения ОДУ, САУ, а также технология разреженных матриц. Заодно были получены основные навыки в программировании математической системы PC MathLab. Каждый из представленных методов по своему хорош и применяется для систем определенного вида.
В теоретической расчетно-графической работе (далее РГР) требуется составить программу для решения системы нелинейных уравнений методом последовательной итерации обратной матрицы Якоби.
Суть метода в следующем:
Пусть требуется решить
F 41 0(X 41 0,X 42 0,...,X 4n
с начальным приближением к
решению:
X 50 0=(x 41 50 0,x 42 50 0,..
Вычислительная схема
В начале итерационного
H 50 0=E.
Затем для k=0,1,...
1. Вычисляется
P 5k 0= 5 0- 5 0H 5k 0* 5 0F(X 5k 0);
Информация о работе Неявные методы решения системы уравнений ОДУ