Нестандартные алгоритмы счета или быстрый счет без калькулятора

Автор: Пользователь скрыл имя, 12 Декабря 2012 в 17:25, научная работа

Описание работы

Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.
Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В нашей работе предпочтение отдано стихии чисел и действий с ними.

Содержание

Введение……………………………………………………………………..…………….3
Глава 1. История счета
1.1. Как люди научились считать……...............................................................................6
1.2. Чудо- счетчики……………………………………………………………………...9
Глава 2. Старинные способы умножения
2.1. Русский крестьянский способ умножения…..…………….……………….……...12 2.2. Метод «решетки»……………….…….. ………………………………….………..13
2.3. Индийский способ умножения……………………………………………………..15
2.4. Египетский способ умножения…………………………………………………….16
2.5. Умножение на пальцах……………………………………………………………..17
Глава 3. Устный счет – гимнастика ума
3.1. Умножение и деление на 4……………..……………………….………………….19
3.2. Умножение и деление на 5……………………………………...………………….19
3.3. Умножение на 25……………………………………………………………………19
3.4. Умножение на 1,5……………………………………………………………….......20
3.5. Умножение на 9……….…………………………………………………………….20
3.6. Умножение на 11…………………………………………………..…………….….20
3.7. Умножение трехзначного числа на 101……………………………………………21
3.7. Возведение в квадрат числа, оканчивающегося цифрой 5 ………………………21
3.8. Возведение в квадрат числа, близкого к 50……………….………………………22
3.9. Игры………………………………………………………………………………….22
Заключение…………………………………………………………………………….…24
Список использованной литературы……………………

Работа содержит 1 файл

Maths.doc

— 352.00 Кб (Скачать)

Муниципальное общеобразовательное  учреждение

Старомаксимкинская основная общеобразовательная  школа

 

 

Районная  научно – практическая конференция по математике

«Шаг в науку»

 


 

 

 

 

 

 

 

 

Научно – исследовательская  работа

 

« Нестандартные алгоритмы счета или быстрый счет без калькулятора»

 

 

 

 

 

 

 

 

 

                                                            Автор:   Мурзаев Александр, 7 класс

                                                  Руководитель:  Забродина Елена  Петровна,

                                                                                     учитель математики

 

 

 

 

 

                                                               

с.Ст.Максимкино, 2010

СОДЕРЖАНИЕ

 

Введение……………………………………………………………………..…………….3

Глава 1. История счета

1.1. Как люди научились считать……...............................................................................6

1.2. Чудо- счетчики……………………………………………………………………...9

Глава 2. Старинные способы умножения

2.1. Русский крестьянский способ умножения…..…………….……………….……...12                  2.2.  Метод «решетки»……………….…….. ………………………………….………..13

2.3. Индийский способ умножения……………………………………………………..15

2.4. Египетский способ умножения…………………………………………………….16

2.5. Умножение на пальцах……………………………………………………………..17

Глава 3. Устный счет – гимнастика ума

3.1. Умножение и деление на 4……………..……………………….………………….19

3.2. Умножение и деление на 5……………………………………...………………….19

3.3. Умножение на 25……………………………………………………………………19

3.4. Умножение на 1,5……………………………………………………………….......20

3.5. Умножение на 9……….…………………………………………………………….20

3.6. Умножение на 11…………………………………………………..…………….….20

3.7. Умножение трехзначного числа  на 101……………………………………………21

3.7. Возведение в квадрат числа, оканчивающегося цифрой 5 ………………………21

3.8. Возведение в квадрат числа, близкого к 50……………….………………………22

3.9. Игры………………………………………………………………………………….22

Заключение…………………………………………………………………………….…24

Список использованной литературы…………………………………………………...25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

    Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера  телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны,  если бы не наука о числах.

Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В нашей работе предпочтение  отдано стихии чисел и действий с ними.

Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому мы сочли важным показать не только то, что сам процесс выполнения действия может быть интересным, но и что, хорошо усвоив приёмы  быстрого счета,  можно поспорить и с ЭВМ.

Объектом исследования являются алгоритмы счета.

Предметом исследования выступает процесс вычисления.

Цель: изучить нестандартные приемы вычислений и экспериментальным путем выявить причину отказа от использования этих способов при обучении математике  современных  школьников.

    Задачи:

- раскрыть историю возникновения  счета и феномен « Чудо - счётчиков»;

- описать старинные способы  умножения и опытно-экспериментальным   путем выявить трудности в их  использовании;

- рассмотреть некоторые приемы  устного умножения и на конкретных примерах показать преимущества их использования.

Гипотеза: в старину говорили: « Умножение – мое мученье». Значит, раньше было сложно и трудно умножать. Прост ли наш современный способ умножения?

При работе над  докладом я пользовался следующими методами:

  • поисковый метод с использованием научной и учебной литература, а также поиск необходимой информации в сети Интернет;
  • практический метод выполнения вычислений с применением нестандартных алгоритмов счета;
  • анализ полученных в ходе исследования данных.

Актуальность данной темы заключается в том, что использование нестандартных приемов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.

За простым действием умножения  скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали. Захотелось узнать эти и другие способы умножения, сравнить их с нашим сегодняшним действием умножения.

Для того чтобы выяснить, знают  ли современные школьники другие способы выполнения арифметических действий, кроме умножения столбиком и деления «уголком» и хотели бы узнать новые способы, был  проведен устный опрос. Было опрошено 20 учащиеся 5-7 классов. Этот опрос показал, что современные школьники не знают других способов выполнения действий, так как редко обращаются к материалу, находящемуся за пределами школьной программы.

 

Результаты анкетирования:

( На диаграммах представлены  в процентах доли утвердительных  ответов учащихся).

 

1) Нужно ли уметь выполнять  арифметические действия с натуральными числами современному человеку?

 

                                  


2) а) Умеете ли вы умножать, складывать,

вычитать числа столбиком, делить «уголком»?

 

 

 

 

 

   б) Знаете ли вы другие  способы выполнения арифметических  действий?

 

 

 


3) а хотели бы узнать?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1. История счёта

1.1. Как возникли числа

Подсчитывать предметы люди научились  ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары. 
       И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки - по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы - он пас и коров, и коз, и ослов. Поэтому пришлось делась из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.

Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал-энэа», 4 «петчевал-петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньше: 4= «булан – булан», 5= «булан – гулиба», 6= « гулиба – гулиба» и т.д.

У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали  лодки, то число 10 называли « боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине и берегах Амура нивхи. Ещё в прошлом веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.

Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.

С развитием производства и торгового обмена люди стали  лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел  и десяти орехов. Племена часто  вели обмен «предмет за предмет»; к  примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.

Постепенно люди начали использовать для счёта камешки, палочки, части  собственного тела. Вот как известный  русский учёный Н.Н. Миклуха - Маклай описывал счёт папуасов: «Папуас загибает один за другим пальцы руки, причём издаёт определённый звук, например «бе, бе, бе..». Досчитав до пяти, он говорит: «Ибон-бе» (рука). Затем он загибает пальцы другой руки, снова повторяя «бе, бе..», пока не дойдёт до «ибон-али» (две руки). Затем он идёт дальше, приговаривая «бе, бе…», пока не дойдёт до «самба-бе» (одна нога) и «самба-али» (две ноги). Если нужно считать дальше, папуас пользуется пальцами рук и ног кого-нибудь другого».

Похожие способы счёта применяли  и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.

До сих пор мы рассказывали об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни - Вестонице (Чехословакия), имела 55 насечек, сделанных более 25000 лет назад.

Когда появилась письменность, появились  и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы астеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .

В то время почти все нумерации  были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.

За несколько столетий до новой  эры изобрели новый способ записи чисел, при котором цифрами служили  буквы обычного алфавита. Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами- числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).

Во всех этих нумерациях было очень  трудно выполнить арифметические действия. Поэтому изобретение в 6 в. индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.

При записи дробей ещё долгое время  целую часть записывали в новой, десятичной нумерации, а дробную – в шестидесятеричной. Но в начале 15 в. самаркандский математик и астроном аль- Каши стал употреблять в вычислениях десятичные дроби. 

Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается,  что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.

 

 

 

1.2 « Чудо - счётчики»

 

Он все понимает с полуслова  и тут же формулирует вывод, к  которому обычный человек, может  быть, придет путем долгих и тягостных  раздумий. Книги он поглощает с невероятной скоростью, а на первом месте в его шорт-листе бестселлеров — учебник по занимательной математике. В момент решения самых трудных и необычных задач в его глазах горит огонь вдохновения. Просьбы сходить в магазин или помыть посуду остаются без внимания либо выполняются с большим недовольством. Самая лучшая награда — это поход в лекторий, а самый ценный подарок — книга. Он максимально практичен и в своих поступках в основном подчиняется рассудку и логике. Он холодно относится к окружающим его людям и предпочтет катанию на роликах шахматную партию с компьютером. Будучи ребенком, он не по годам осознает собственные недостатки, отличается повышенной эмоциональной устойчивостью и приспособляемостью к внешним обстоятельствам.

Этот портрет написан отнюдь не с аналитика ЦРУ.  
Так, по мнению психологов, выглядит человек-калькулятор, индивидуум, обладающий уникальными математическими способностями, позволяющими ему в мгновение ока производить в уме самые сложные подсчеты.

За порогом сознания чудо - счетоводы, способные без калькулятора совершать невообразимо сложные арифметические действия, обладают уникальными особенностями памяти, отличающей их от других людей. Как правило, кроме огромных линеек формул и вычислений, эти люди (ученые их называют мнемониками — от греческого слова mnemonika, означающего "искусство запоминания") держат в голове списки адресов не только друзей, но и случайных знакомых, а также многочисленных организаций, где им когда-то приходилось бывать.

В лаборатории НИИ психотехнологий, где решили исследовать феномен, провели такой эксперимент. Пригласили уникума — сотрудника Центрального государственного архива Санкт-Петербурга Александра Н. Ему предлагали для запоминания различные слова и цифры. Он должен был их повторять. За каких-то пару минут он мог зафиксировать в памяти до семидесяти элементов. Десятки слов и цифр буквально "загрузили" в память Александра. Когда количество элементов перевалило за две сотни, решили проверить его возможности. К удивлению участников эксперимента, мегапамять не дала ни одного сбоя. С секунду пошевелив губами, он с поразительной точностью, словно читая, начал воспроизводить весь ряд элементов.

Информация о работе Нестандартные алгоритмы счета или быстрый счет без калькулятора